1. Take Home Final Exam

The exam is due at noon on May 8th

1. Show that given a cubic polynomial \(f(x) = x^3 + ax^2 + bx + c \) that the polynomial \(g(y) = x^3 + py + q \) is obtained through the substitution \(y = x + \frac{a}{3} \), where

\[
p = \frac{1}{3} (3b - a^2) \quad q = \frac{1}{27} (2a^3 - 9ab + 27c).
\]

2. Prove that \(\text{Aut}(\mathbb{R}|\mathbb{Q}) \) is trivial.

3. Compute the Galois group of
 a) \(f(x) = x^3 - x - 1 \) over \(\mathbb{Q} \).
 b) \(f(x) = x^4 - 4x^2 + 5 \) over \(\mathbb{Q} \).
 c) \(f(x) = x^3 - 48x - 64 \) over \(\mathbb{Q} \).
 d) \(f(x) = x^4 + 8x + 12 \) over \(\mathbb{Q} \).

4. Let \(A \) be an integral domain. Recall that for a maximal ideal \(M \in \text{Max}(A) \), that \(A_M \) is the localization of \(A \) at \(M \). Prove that

\[
\bigcap_{M \in \text{Max}(A)} A_M = A.
\]