Define the following: Directions: Make sure to show any necessary work to receive full credit. If you need extra space please use the back of the sheet with appropriate labeling.

1. [8 pts.] Fill in the following truth table.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>(P ∨ Q)</th>
<th>P → Q</th>
<th>(P ∧ Q)</th>
<th>(P ∨ Q) → (P ∧ Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

2. [2 pts.] Give an example of a sentence that is a literal. Then give an example of a sentence that is not a literal.

3. [3 pts.] Given the conditional statement Q → R write down and label the converse, inverse, and contrapositive.

4. [2 pts.] Give an example of a tautology.

5. [4 pts.] Give an example of a TW-necessity which is not a logical necessity.
6. [2 pts.] Give an example of a transitive predicate of arity 2 which is neither symmetric nor reflexive.

7. [2 pts.] Give an example of a symmetric predicate of arity 2 which is not transitive.

8. [3 pts.] Give an example of a prefix predicate of arity 2 which is symmetric, reflexive, and transitive.

9. [3 pts.] True or False: \(\forall x \text{Tet}(x) \rightarrow \text{Large}(x) \) is a well-formed sentence.

10. [3 pts.] A function symbol is not a predicate. Explain the difference.

11. [4 pts.] Translate the following sentence into blocks language.

 Everything smaller than a is a cube.

12. [4 pts.] Translate the following sentence into blocks language.

 Some dodecahedron is not large.
[8 pts.] The following problem presents a formal argument. If the argument is valid, write a proof of it using Fitch. If the argument is not valid, submit a counterexample world using Tarski’ World. Important: if you use Ana Con in your proof, cite at most two sentences in each application. You may not use Taut Con.

\begin{align*}
\text{SameRow}(b,c) \\
\text{SameRow}(a,d) \\
\text{SameRow}(d,f) \\
\text{LeftOf}(a,b) \\
\text{LeftOf}(f,c)
\end{align*}

[8 pts.] The following problem presents a formal argument. If the argument is valid, write a proof of it using Fitch. If the argument is not valid, submit a counterexample world using Tarski’ World. Important: if you use Ana Con in your proof, cite at most two sentences in each application. You may not use Taut Con.

\begin{align*}
\text{Small}(a) \lor \text{Small}(b) \\
\text{Small}(b) \lor \text{Small}(c) \\
\text{Small}(c) \lor \text{Small}(d) \\
\text{Small}(d) \lor \text{Small}(e) \\
\neg \text{Small}(c) \\
\text{Small}(a) \lor \text{Small}(e)
\end{align*}
[12 pts.] Build a world where all of the following sentences are true.

1. \(\neg \) Tet(f)
2. \(\neg \) SameCol(c,a)
3. \(\neg \neg \) SameCol(c,b)
4. \(\neg \) Dodec(f)
5. \(c \neq b \)
6. \(\neg (d \neq e) \)
7. \(\neg \) SameShape(f,c)
8. \(\neg \neg \) SameShape(d,c)
9. \(\neg \) Cube(e)
10. \(\neg \) Tet(c)
[10 pts.] Assess whether the argument is valid. If it is supply a Fitch proof. You may use Ana Con but only involving literals and ⊥. You may not use Taut Con. If it is not valid supply a counterexample.

\[
\begin{align*}
\text{Dodec}(b) &\lor \text{Cube}(b) \\
\text{Small}(b) &\lor \text{Medium}(b) \\
\neg (\text{Small}(b) &\land \text{Cube}(b)) \\
\text{Medium}(b) &\land \text{Dodec}(b)
\end{align*}
\]
[20 pts.] Supply a Fitch proof for the following argument. You may not use Ana Con. You may use Taut Con but only to establish a Law of Excluded Middle.

\[\neg \text{Cube}(b) \rightarrow \text{Small}(b)\]
\[\text{Small}(c) \rightarrow (\text{Small}(d) \lor \text{Small}(e))\]
\[\text{Small}(d) \rightarrow \neg \text{Small}(c)\]
\[\text{Cube}(b) \rightarrow \neg \text{Small}(e)\]
\[\text{Small}(c) \rightarrow \text{Small}(b)\]
[15 pts.] Supply a Fitch proof for the following argument. You may not use Ana Con.

\[(A \land B) \lor C\]
\[(A \lor C) \land (B \lor C)\]

[20 pts.] Supply a Fitch proof for the following argument. You may not use Ana Con.

\[\neg(P \lor Q) \leftrightarrow (\neg P \land \neg Q)\]
[20 pts.] Determine whether the following argument is valid or not. If it is give a formal proof. Otherwise, provide a counterexample.

$$\forall x [\text{Cube}(x) \lor (\text{Tet}(x) \land \text{Small}(x))]$$

$$\exists x [\text{Large}(x) \land \text{Medium}(c)]$$

$$\exists x [\text{Medium}(c) \land \text{Cube}(x)]$$
[20 pts.] Determine whether the following argument is valid or not. If it is give a formal proof. Otherwise, provide a counterexample.

∀x[(\text{Cube}(x) \land \text{Large}(x)) \lor (\text{Tet}(x) \land \text{Small}(x))]

∀x[\text{Tet}(x) \rightarrow \text{Tet}(b)]

∀x[\text{Small}(x) \rightarrow \text{Tet}(b)]
[Bonus] Determine whether the following argument is valid. If it is supply a Fitch proof. You may not use Ana Con. You may use Taut Con but only to establish a Law of Excluded Middle. If it is invalid supply a counterexample.

\[(\text{Tet}(a) \land \text{Large}(a)) \lor (\text{Cube}(a) \land \text{Small}(a))\]
\[\neg \text{Small}(b)\]
\[(\text{Tet}(a) \lor \text{Cube}(a)) \rightarrow (\text{Large}(b) \lor \text{Small}(b))\]
\[\text{Tet}(a) \rightarrow \text{Medium}(b)\]
\[\text{Small}(a) \land \text{Large}(b)\]