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Abstract

Las Vergnas [9] introduced several lattice structures on the bases of an ordered ma-
troid M by using their external and internal activities. He also noted [10] that when
computing the Möbius function of these lattices, it was often zero, although he had no
explanation for that fact. The purpose of this paper is to provide a topological reason
for this phenomenon. In particular, we show that the order complex of the external
lattice L(M) is homotopic to the independence complex of the restriction M∗|T where
M∗ is the dual of M and T is the top element of L(M). We then compute some exam-
ples showing that this latter complex is often contractible which forces all its homology
groups, and thus its Möbius function, to vanish. A theorem of Björner [3] also helps
us to calculate the homology of the matroid complex.



1 The external and internal orders

In September of 2001, there was a conference on Tutte Polynomials and Related Topics
at the Centre de Recerca Matemàtica in Barcelona, Spain. At the meeting, Michel Las
Vergnas gave a talk about three lattice structures which he had imposed on the bases
of an ordered matroid using external and internal activity [9]. During the question and
answer period that followed, one of us (Sagan), asked if Las Vergnas knew anything
about the Möbius function of these lattices. Las Vergnas replied that he had computed
some examples and noted that the value was often zero, but did not have an explanation
for that fact.

In this paper, we will give a topological reason for Las Vergnas’ observation. The
rest of this section will be devoted to developing the definition and some basic properties
of the external lattice, L(M), of an ordered matroid M . In the next section, we derive
some results about the structure of L(M) which will be useful in working with its order
complex ∆(M). In particular, we give a simpler formula for the join operator than
was given by Las Vergnas. The third section contains our main theorem, showing that
∆(M) is homotopic to the independence complex IN of the restriction M∗|T where
M∗ is the dual of M and T is the top element of L(M). In section 4, we compute some
examples showing that IN is often contractible which forces all its homology groups,
and thus its Möbius function, to be zero. A characterization of the homology of IN
due to Björner [3] is recalled in the next section and used for the calculation of yet
more examples. The final section contains a couple of open problems.

Let M be a matroid on a finite set E. We denote the bases and independent sets
of M by B = B(M) and I = I(M), respectively. We say that M is ordered if E is
linearly ordered. From now on all matroids will be ordered.

Given a set F ⊆ E we say that e ∈ E is active with respect to F if there is a circuit
C(F ; e) ⊆ F ∪ {e} in which e is minimal with respect to the ordering on E. Let

ActM(F ) = {e : e is active with respect to F}.

Note that we include the possibility that e ∈ F . Note also that we will often write
one-element sets without the set braces and drop M as a subscript if the matroid is
clear from context.

For F ⊆ E we define
ExtM(F ) = ActM(F ) − F.

The elements of ExtM(F ) are called externally active with respect to F . This coincides
with the usual notion of externally active elements with respect to an element of B.

Las Vergnas defined the external lattice of M in a manner equivalent to the follow-
ing. For A, B ∈ B, define

A ≤ext
M B if and only if A ⊆ B ∪ ExtM(B).
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Figure 1: An example graph and its external lattice

It was proven in [9] that, when augmented with a minimum element 0̂, the resulting
order is in fact a graded lattice with rank function

ρM (B) = |ExtM(B)| + 1. (1)

We will denote this lattice by L(M). It is important to remember that, even though
our notation does not show it, this lattice structure depends on the ordering of the
base set of M .

By way of illustration, let us construct an external lattice using the cycle matroid
M = M(G) of a graph G = (V, E). Let G be the graph in Figure 1 with edges ordered
as indicated. Then L(M(G)) has Hasse diagram as shown. So, for example, to compute
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the bases below the base B = {0, 3, 4} note that ExtM(B) = {1} since the edge 1 is
the smallest element in its fundamental circuit with B while 2 is not. It follows that
any base contained in B∪ExtM(B) = {0, 1, 3, 4} will be less than or equal to B. These
bases are exactly those obtained by removing some element of the fundamental circuit
of 1 from the union.

Returning to our general exposition, let M∗ be the dual matroid of M . We turn
M∗ into an ordered matroid using the order already given on E. Las Vergnas [9] also
defined another ordering ≤int

M on B(M) by

A ≤int
M B ⇐⇒ (E − B) ≤ext

M∗ (E − A). (2)

We should note that one can also define ≤int
M using the internal activity of bases of M

(which also eliminates the need to pass to M∗), but (2) will be more convenient for our
purpose. When augmented with a maximum element 1̂, the resulting order is called
the internal order. Directly from the definitions, we see that this structure is just the
order-theoretic dual of L(M∗). Since the dual of a lattice has the same homology as
the original lattice, we will restrict ourselves to external orders. For that reason, we
will also drop the ext superscript.

It will be useful in the sequel to have the following characterization, due to Las
Vergnas [9, Proposition 3.1] of the external order.

Proposition 1.1 (Las Vergnas) Let A, B be two bases of an ordered matroid M .
Then A ≤ B if and only if B is the lexicographically maximum base of M contained in
A ∪ B (where elements of a base are listed in increasing order).

In the aforementioned paper it was shown that the number of elements at a given
rank in L(M) does not depend on the particular order on E, but that the lattice itself
does. We wish to give some measure of how L(M) depends on the order on E.

Proposition 1.2 Let � and �′ be linear orders on E. Given a matroid on E, let M
and M ′ be the corresponding ordered matroids. Suppose that Act(M) = Act(M ′) and
that �, �′ when restricted to this set are same. Then

L(M) ∼= L(M ′).

Proof We prove that the identity map from B(M) to B(M ′) induces a lattice iso-
morphism of L(M) with L(M ′). So we need to show that for A, B ∈ B(M) = B(M ′)
we have A ⊆ B ∪ ExtM(B) if and only if A ⊆ B ∪ ExtM ′(B). Clearly it suffices to
have ExtM(B) = ExtM ′(B). We will show ExtM(B) ⊆ ExtM ′(B) and then the reverse
inclusion follows by symmetry. Now take a ∈ ExtM(B) and let C be the unique cycle
in B ∪ a. So a is the �-minimum in C and it suffices to show that it is also the �′-
minimum. Let a′ be this �′-minimum. Then a, a′ ∈ Act(M) = Act(M ′) with a � a′

and a′ �′ a. Since the two orderings agree on this set, a = a′ and we are done.
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2 Sublattices and the join operator

Fix a subset F ⊆ E and let K = M |F be the restriction of M to F . Note that it is an
ordered matroid with respect to the ordering induced on F by E. We will say that K
is spanning if F is a spanning set of M , that is, F contains a base of M . We will show
that the lattice for a spanning matroid is closely related to that of the parent matroid.
But first we need a lemma.

Lemma 2.1 Suppose that F ⊆ E and K = M |F . Then for any J ⊆ F we have

(a) ActK(J) = ActM(J) ∩ F , and as a consequence

(b) ExtK(J) = ExtM(J) ∩ F .

Proof (a) The fact that ActK(J) ⊆ ActM(J) ∩ F is clear from the definitions. For
the opposite inclusion, suppose e ∈ ActM(J) ∩ F . Then there is a circuit C ⊆ J ∪ e
in which e is minimal. But then C ⊆ F and e is minimal with respect to the ordering
induced on F so that e ∈ ActK(J).

Part (b) follows immediately from part (a).

Corollary 2.2 Suppose that K = M |F is spanning. Then the inclusion B(K) ⊆ B(M)
induces an inclusion

L(K) ⊆ L(M).

Proof Suppose A, B ∈ B(K). We prove that A ≤M B if and only if A ≤K B. By
definition, A ≤M B if and only if A ⊆ B ∪ ExtM(B). Since A, B ⊆ F this happens if
and only if A ⊆ B ∪ (ExtM(B) ∩ F ). By the previous lemma, B ∪ (ExtM(B) ∩ F ) =
B ∪ ExtK(B). So we are done.

Following Las Vergnas [9], for a spanning subset A ⊆ E we define

MaxBas A = A − Act(A).

Alternatively, one can define this as the lexicographically maximum base of M con-
tained in A, using the convention of Proposition 1.1. We obtain the maximum element
of L = L(M) as

T = MaxBas E

and reserve the notation T for this top element. Las Vergnas gave a formula for the
join operator ∨ for two elements of L using the MaxBas operator. Using Corollary 2.2
we give a slight but useful simplification of his result, at the same time extending it to
the join of an arbitrary number of elements in L.
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Corollary 2.3 The join of elements Bi ∈ B(M) (i = 1, 2, . . . , m) in L(M) is given by

m
∨

i=1

Bi = MaxBas

(

m
⋃

i=1

Bi

)

Proof Let K = M |F where F =
⋃m

i=1 Bi and let S = MaxBas(F ). We must prove
that S =

∨m

i=1 Bi. First of all, for all i we have Bi ≤K S because S is the maximal
element of L(K). By Corollary 2.2 this means Bi ≤M S for all i.

Now suppose T ∈ B(M) satisfies Bi ≤M T for all i. Then Bi ⊆ T ∪ ExtM(T ) so
that F =

⋃m
i=1 Bi ⊆ T ∪ ExtM(T ). But S ⊆ F ⊆ T ∪ ExtM(T ) and so by we have

S ≤M T . Thus S =
∨m

i=1 Bi.

We denote the set of atoms of L(M) by A(M). By (1), these are precisely the bases
B for M with Ext(B) = ∅.

Corollary 2.4 Let A′ ⊆ A(M). Then
∨

B∈A′ B = T if and only if every element of T
is contained in some element B ∈ A′.

Proof This follows from Corollary 2.3 and the following observation which is needed
for the “if” direction. Suppose T ⊆ F for some F ⊆ E. Then since T ∩ Act(F ) ⊆
T ∩Act(E) = ∅ we have T ⊆ MaxBas(F ). Also, if F is spanning, then MaxBas(F ) is a
base for M . Since T is also a base for the matroid M , we find T = MaxBas(F ).

The inclusion in Corollary 2.2 does not preserve the rank function in general. But
it does under certain circumstances.

Lemma 2.5 If K = M |F is spanning and B ∈ B(K) ⊆ B(M), then the following
hold.

(a) We have ρK(B) = ρM(B) if and only if ExtM(B) ⊆ F .

(b) If F ⊇ E − T , then the inclusion L(K) ⊆ L(M) preserves rank.

(c) If f < e for all f ∈ F and e ∈ E−F , then the inclusion L(K) ⊆ L(M) preserves
rank.

Proof (a) We have ρK(B) = |ExtK(B)| + 1 and ρM (B) = |ExtM(B)| + 1. Now
Lemma 2.1 completes the proof.

(b) This follows from part (a) since for any A ⊆ E we have ExtM(A) ⊆ ActM(E) =
E − T .

(c) This also follows from part (a) since the assumption implies that no element of
E − F can be externally active with respect to any subset of F .

Given a subset F ⊆ E and an ordering on F we can always define an ordering on E
such that the condition in (c) of Lemma 2.5 holds. Thus we have proved the following
observation.
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Corollary 2.6 Let K be an ordered matroid on a set F . If M is an unordered matroid
on a set E ⊇ F such that K = M |F and K is spanning, then we can find an ordering
on E inducing a rank-preserving inclusion L(K) ⊆ L(M).

In particular if K is the cycle matroid of a connected graph H with edge set F ,
then for M we can take the cycle matroid of the complete graph on the vertex set of
H .

3 The homotopy equivalence

In this section we study the reduced homology of the order complex of the lattice
L(M). We will show that there is a homotopy equivalence between the order complex
of L(M) and the independence complex of M∗ restricted to T . This will we used in the
next section to explain Las Vergnas’ observation about the Möbius function of L(M).

Let L be a finite lattice with minimum and maximum elements 0̂ and 1̂, respectively.
Note that L will be used when discussing an arbitrary lattice, whereas the symbol L(M)
will always be used when we wish to refer to the external lattice of a matroid. We
denote by ∆(L) the order complex of L, that is, the abstract simplicial complex on the
set L− {0̂, 1̂} whose faces are the nonempty chains in L− {0̂, 1̂} ordered by inclusion.
If L = L(M) for some matroid, then we will also use the notation ∆(M) = ∆(L(M)).

There is another abstract simplicial complex associated with a matroid. The in-
dependence complex of M , denoted IN(M), is the simplicial complex of nonempty
independent subsets of M . Our main theorem relates the two complexes we have de-
fined. In it, H̃i(∆) will denote the reduced i-dimensional homology group of a complex
∆ with coefficients in Z (see e.g. Stanley [14, Ch.3]).

Theorem 3.1 We have a homotopy equivalence

∆(M) ≃ IN(M∗|T ).

So, for all i ≥ −1, we have an isomorphism in homology

H̃i(∆(M)) ∼= H̃i(IN(M∗|T )).

Note that this result implies that the homotopy type of the order complex depends only
on the maximum base T . We will prove Theorem 3.1 using the next two propositions.

Let L be an arbitrary lattice with atom set A. Let J = J (L) be the abstract
simplicial complex of all subsets of A whose join is not 1̂. The following is a theorem
of Lakser [8] later generalized by Björner [2] and Segev [13].
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Proposition 3.2 For any lattice L

∆(L) ≃ J (L).

Let F be an abstract simplicial complex on a finite set F . A facet covering of F
is a multiset of facets C = {F0, F1, . . . , Fn} such that every face of F is contained in
some Fi. The nerve Nerv(C) of the covering is the simplicial complex on the vertex set
I = {0, 1, 2, . . . , n} where a subset J ⊆ I is a face if and only if

⋂

j∈J Fj is a face of F .
As will be seen, the nerve of a certain covering of J (L) is isomorphic to IN(M∗|T ).

But first we must show that F and Nerv(C) are the same up to homotopy. Note that
every nonempty intersection of facets of F is again a face of F . Thus the intersections
⋂

j∈J Fj are contractible as subspaces of F and hence are acyclic. Thus the hypotheses
of the Nerve Theorem of Borsuk and Folkman are satisfied (see (10.6) in Björner [4])
and we obtain our second proposition.

Proposition 3.3 Let F be a simplicial complex on a set F and let C be a facet covering.
Then

F ≃ Nerv(C).

The last link in our chain of homotopy equivalences will be provided by T ′, the set
of elements of T which are independent as singleton sets in M∗. Then IN(M∗|T ) =
IN(M∗|T ′). Note that the elements e ∈ E which are not independent in M∗ are
precisely those which are contained in every base for M . We can now prove our main
result.

Proof (of Theorem 3.1) Combining Propositions 3.2 and 3.3 for any facet cov-
ering C(L) of J (L) we have

∆(L) ≃ J (L) ≃ Nerv(C(L)).

So it suffices to show that we can find a facet covering C = C(L(M)) such that Nerv(C)
and IN(M∗|T ) are isomorphic as simplicial complexes.

We have IN(M∗|T ) = IN(M∗|T ′) and suppose T ′ = {t0, t1, . . . , tn}. For 0 ≤ i ≤ n,
define Fi = {A ∈ A : A ⊆ E − {ti}}. Then it follows from Corollary 2.4 that these
are the facets of J (L(M)), possibly with repetitions. Let C be the corresponding facet
covering of J (L(M)). We can now define a bijection φ : IN(M∗|T ′) → Nerv(C) as
follows. If S ⊆ T ′ then let

φ(S) = J = {j : tj ∈ S}.

Clearly φ is a bijection between subsets of T ′ and subsets of I. We claim that φ restricts
to a well-defined isomorphism between the respective complexes, that is,

⋂

j∈φ(S) Fj 6= ∅

if and only if S is independent in M∗|T ′. This is because S is independent in M∗|T ′

if and only if E − S contains a base for M which, by Lemma 2.5(b), is equivalent to
E−S containing an atom for L(M). This completes the proof of the isomorphism and
of Theorem 3.1.
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4 Applications

We are now ready to explain the empirical observation of Las Vergnas that the Möbius
function µ of the external lattice L(M) often satisfies µ(L(M)) = 0. It is known that,
given any finite lattice L with minimum element 0̂, maximum element 1̂, and Möbius
function µ, one has

µ(L) := µL(0̂, 1̂) = χ̃(∆) =
∞
∑

i=−1

(−1)i dim H̃i(∆) (3)

where ∆ is the order complex of L and χ̃ is the reduced Euler characteristic. This
equation together with Theorem 3.1 can be used to show that a number of external
activity lattices have Möbius function zero. We will use the notation H̃i(M) and µ(M)
for H̃i(∆(M)) and µ(L(M)), respectively. We will also use rk(M) for the rank of the
matroid M . This should not be confused with the rank function ρ for the lattice L(M).

Proposition 4.1 Let M be an ordered matroid with maximum base T and rank r =
rk(M) ≥ 1.

(a) Suppose that M |(E − T ) is spanning. Then

H̃i(M) = {0} for all i ≥ −1 and µ(M) = 0.

(b) Suppose that M |(E − S) is spanning for all proper subsets S ⊂ T but is not
spanning for S = T . Then

H̃i(M) =

{

Z if i = r − 2,
{0} else,

and µ(M) = (−1)r−2.

Proof Under the first (respectively, second) hypothesis, IN(M∗|T ) is homologically an
(r−1)-ball (respectively, (r−2)-sphere). The conclusions now follow from Theorem 3.1
and equation (3).

As an example, consider the cycle matroid of a graph G where, as usual, the edge
set E = E(G) has been linearly ordered. In this case we will use G in our notation
everywhere we used M before. In the following result a star is the complete bipartite
graph K1,n−1.

Corollary 4.2 Let Kn be an ordered complete graph on n vertices, n ≥ 2, and let T
be its lexicographically maximal spanning tree.

(a) If T is not a star then

H̃i(Kn) = {0} for all i ≥ −1 and µ(Kn) = 0.
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(b) If T is a star

H̃i(Kn) =

{

Z if i = n − 3,
{0} else,

and µ(Kn) = (−1)n−3.

Proof If T is not a star, then Kn − E(T ) is connected and the hypotheses of Propo-
sition 4.1 (a) are satisfied. If T is a star, then Kn − E(S) is connected for all S ⊆ T ,
except for S = T . Thus the hypotheses of Proposition 4.1 (b) are fulfilled.

Note that this corollary lends support to Las Vergnas’ remark cited in the intro-
duction. In particular, almost all orderings of E(Kn) give rise to a T which is not a
star. To see this, note that T must always contain the two largest edges in the ordering
since otherwise a larger base could be constructed by exchanging an element of T with
one of these edges. So if the two largest edges are not adjacent in Kn then T cannot
be a star. But the ratio of such orderings to the total number of orderings, counting
edge choices from largest to smallest in the order, is

(

n

2

)(

n−2
2

) [(

n

2

)

− 2
]

!
(

n

2

)

!
=

(

n−2
2

)

(

n

2

)

− 1
→ 1

as n → ∞.
Also as a result of this corollary, we can see that ∆(M) is not, in general, shellable

(even though IN(M∗|T ) always is, see Björner [3, Theorem 7.3.3]). If ∆ is any simplicial
complex which is shellable and pure of dimension d, then ∆ is topologically a wedge
of d-spheres and so only has homology in dimension d. So if a finite lattice L graded
of rank ρ is shellable, then it only has homology in dimension ρ − 2 (since we remove
0̂ and 1̂). But in L(M) we have

ρ(L(M)) = ρ(T ) = |Ext(T )| + 1 = |E − T | + 1.

In particular

ρ(L(Kn)) =

(

n

2

)

− (n − 1) + 1 =

(

n − 1

2

)

+ 1.

But from the previous corollary, if T = K1,n−1 then L(Kn) has homology in dimension
n − 3 <

(

n−1
2

)

− 1 for n ≥ 4.

Here is another family of matroids which have zero Möbius function.

Corollary 4.3 Let M be an ordered matroid with maximum base T and suppose there
is t ∈ T such that rk(E − T ) = rk((E − T ) ∪ t). Then

H̃i(M) = {0} for all i ≥ −1 and µ(M) = 0.
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Figure 2: The fan F4 and triangle graph T3

Proof Suppose that t ∈ T satisfies rk(E − T ) = rk((E − T ) ∪ t). This means that if
a base B ∈ B(M) intersects T minimally, then t 6∈ B. That is, t is not contained in
any base of the contraction M.T and hence is contained in every base of M∗|T . Thus
IN(M∗|T ) is a cone with vertex t. The result follows.

For application in our examples, note that for the cycle matroid of a graph G, the
hypothesis of Corollary 4.3 just says that the edge t ∈ T connects two vertices in the
same component of G−E(T ). We first consider the n-fan, Fn, which is obtained from
a path with n vertices by adding an additional vertex adjacent to every vertex of the
path. More explicitly, Fn = (V, E) where V = {0, 1, . . . , n} and

E = {01, 02, . . . , 0n} ⊎ {12, 23, . . . , (n − 1)n}

where ⊎ denotes disjoint union. We always write our edges with the smaller vertex
first and order them lexicographically. Then

E(T ) = {0n, 12, 23, . . . , (n − 1)n}.

Figure 2 contains a drawing of F4 with the edges of T in gray. It is easy to see that
if n ≥ 3 then the edge t = 12 satisfies the component criterion of the first sentence in
this paragraph.

Next consider the n-triangle graph, Tn, gotten by gluing together n copies of K3

along a common edge. To set notation, let

E = {e0, e1, . . . , e2n}

where the ith triangle has edges {e0, ei, en+i} and edges are ordered by their subscripts.
Now

T = {en, en+1, . . . , e2n}

The graph T3 is depicted in Figure 2. So if n ≥ 3 then the edge t = en+1 will satisfy
the component criterion. By Corollary 4.3, we have proved the following.
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Proposition 4.4 For the given orderings and n ≥ 3 we have

H̃i(Fn) = H̃i(Tn) = {0} for all i ≥ −1 and µ(Fn) = µ(Tn) = 0.

5 A theorem of Björner

A theorem of Björner [3, Theorem 7.8.1] characterizes the reduced homology of IN(M)
for any matroid M and can be used in conjunction with Theorem 3.1 for computations.
To state it, we will need the lattice of flats of M which will be denoted LF (M) to dis-
tinguish it from the external activity lattice. Also, define the reduced Möbius function
of M to be

µ̃(M) =

{

|µ(LF (M))| if M is loopless,
0 else.

Theorem 5.1 (Björner) If r = rk(M) then

H̃i(IN(M)) ∼=

{

Z
µ̃(M∗) if i = r − 1,

{0} else.

Now if F ⊆ E, consider M.F , the contraction of M to F . Our interest stems from
the fact that (M∗|F )∗ = M.F . An immediate corollary of the previous theorem and
Theorem 3.1 is as follows.

Theorem 5.2 If r∗ = rk(M∗|T ) then

H̃i(M) ∼=

{

Z
µ̃(M.T ) if i = r∗ − 1,

{0} else.

Corollary 5.3 If r = rk(M), then

µ(M) =

{

(−1)r−1µ(LF (M.T )) if M.T is loopless,
0 else.

Proof Let r∗ = rk(M∗|T ). Viewing µ(M) as the reduced Euler characteristic of ∆(M)
and using Theorem 5.2 we find µ(M) = (−1)r∗−1µ̃(M.T ). So if M.T has loops then
µ(M) = 0 by definition of µ̃. Otherwise, since M.T = (M∗|T )∗ and |T | = r, the rank
of M.T and hence of LF (M.T ) is r − r∗. As LF (M.T ) is a geometric lattice, the sign
of µ(LF (M.T )) is (−1)r−r∗ and cancelling appropriate powers of −1 gives the desired
conclusion.

Let us apply these results to some examples.
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The uniform matroid Consider the uniform matroid Un,k on the n-set E whose
collection of bases is

B(Un,k) = {I ⊆ E : |I| = k}.

The lattice of flats LF (Un,k) consists of the subsets of E of cardinality strictly less
than k together with E itself, ordered by inclusion. Thus LF (Un,k) is obtained from
the Boolean lattice Bn on E by deleting all elements of rank l ≥ k, except the top
element. We will call this poset the truncated Boolean algebra (see Zhang [17]). Using
the fact that, for any two subsets A ⊆ B ⊆ E, the Möbius function of Bn satisfies

µ(A, B) = (−1)|B−A|,

we find that

µ(LF (Un,k)) = −
k−1
∑

i=0

(−1)i

(

n

i

)

= (−1)k

(

n − 1

k − 1

)

.

Now let M = Un,k for some n > 0, and order E linearly. The top element T of
L is some k-subset of E. One verifies that M∗|T is the uniform matroid Uk,r∗ , where
r∗ = min{k, n − k}, and that M.T is the uniform matroid Uk,k−r∗.

Suppose k ≤ n/2. Then r∗ = k and only the empty set is independent in M.T .
Hence M.T has loops, µ̃(M.T ) = 0, and we have H̃i(∆) = {0} for all i, and µ(L) = 0.

Suppose instead that k > n/2 so that r∗ = n − k. Then M.T has no loops and
combining our computation of µ(LF (Un,k)) with Theorem 5.2 and Corollary 5.3 we
have the following result. In it, we assume that

(

j

i

)

= 0 if i < 0.

Proposition 5.4 For any ordering of the uniform matroid Un,k we have

dim H̃i(Un,k) =
(

k−1
2k−n−1

)

if i = n − k − 1 and µ(Un,k) = (−1)n−k−1
(

k−1
2k−n−1

)

.

Note that since L(Un,k) has rank n − k + 1, the complex ∆(Un,k) is pure of dimension
n − k − 1. Apparently ∆(Un,k) only has homology in the top dimension.

The wheel graph Wn Consider the n-wheel graph, Wn, obtained from an n-circuit
C by adding a vertex v0 adjacent to all vertices of the circuit. Let the edge set be
ordered linearly and let T be the top element of L(Wn).

Suppose first that some edge t ∈ T satisfies Proposition 4.3 , i.e., t connects two
vertices in the same component of Wn−E(T ). Then H̃i(Wn) = {0} for all i ≥ −1, and
µ(Wn) = 0.

If there is no such edge, then Wn −E(T ) is partitioned into connected components
C0, C1, . . . , Ck as follows:

1. k = 1, C0 = {v0} and C1 = C, or

12
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Figure 3: The wheel W8 a spanning tree, and components

2. C0 is the union of triangles intersecting only in v0, the components C1, C2,. . . ,
Cl are paths, possibly of length 0, and every edge of T meets C0 and Ci for some
i ≥ 1.

The graph W8, a gray spanning tree T , and the corresponding components are shown
in Figure 3.

Let Ti be the set of edges from T joining C0 to Ci. Then by the above we have T =
⊎k

i=1Ti. Now M.T is the cycle matroid of the graph with vertex set {C0, C1, . . . , Ck},
where Ti represents a set of parallel edges joining the central vertex C0 to Ci. Thus
M.T is the matroid of partial transversals of T with respect to the family {Ti}

k
i=1.

We now determine LF (M.T ). The closed sets of M.T are the unions of the sets
Ti. Thus LF (M.T ) is the Boolean algebra Bk on the set {Ti}

k
i=1. Hence we have

µ(LF (M.T )) = (−1)k. Clearly M∗|T = (M.T )∗ has rank n − k and so, using Theo-
rem 5.2 and its corollary, we obtain the following result.

Proposition 5.5 Let T be the top element of L(Wn) for some ordering of the edges
of Wn.

(i) If there is an edge t ∈ T satisfying Proposition 4.3 then

H̃i(Wn) = {0} for all i ≥ −1 and µ(Wn) = 0.

(ii) If there is no such edge, then

dim H̃i(Wn) =

{

1 if i = n − k − 1,
0 else,

and µ(Wn) = (−1)n−k−1.

Note that since L(Wn) has rank n + 1, the complex ∆(Wn) is pure of dimension n− 1.
We have just shown that in case (ii) ∆(Wn) has homology in dimension n− k− 1 and,
since k cannot be zero, this complex is not shellable.

13



6 Comments and open problems

There are several comments and questions raised by our work which we address now.
I. We observed that the order complex for the uniform matroid has homology in

the correct dimension for it to be shellable. We will now give an explicit shelling. This
gives a way of rederiving Theorem 5.4.

First we recall some basic definitions. Given a finite poset P we let C(P ) be the set
of all pairs (a, b) ∈ P 2 such that a is covered by b, i.e., a < b and there is no c ∈ P with
a < c < b. A saturated a0-ak chain is C = (a0, a1, a2, . . . , ak) where (ai−1, ai) ∈ C(P )
for 1 ≤ i ≤ k. Given a totally ordered set S, then a labelling (function) l : C(P ) → S
induces a labelling of each saturated chain l(C) = (l1, l2, . . . , lk) where li = l(ai−1, ai).
Any properties of the sequence l(C), e.g., strictly increasing, will also be said to apply
to C itself. We say that l is an EL-labelling and that P is EL-shellable if, for any a ≤ b
in P we have

1. There is a unique strictly increasing saturated a-b chain C.

2. Chain C is lexicographically smallest among all saturated a-b chains.

The fundamental theorem about this property is due to Björner [1].

Theorem 6.1 (Björner) Let P be a finite, graded poset with a 0̂ and a 1̂. If P is
EL-shellable then ∆(P ) is homotopic to a wedge of spheres of dimension dim ∆(P ) and
the number of spheres is just the number of weakly decreasing saturated chains from 0̂
to 1̂.

Now consider the uniform matroid Un,k on the set E = {1, 2, . . . , n}. If B ∈ B(Un,k)
then Act(B) = {1, 2, . . . , min(B)− 1} and so B’s rank in the lattice L(Un,k) is ρ(B) =
min(B). It follows that if B covers A ∈ B(Un,k) then we must have

B = A − {min(A)} ⊎ {b} (4)

for some b > min(A) (where b = min(A) + 1 iff min(A) + 1 6∈ A). So we can define a
labelling of the covering pairs by

l(A, B) =

{

the unique element of B − A if A, B ∈ B(Un,k)

max(B) if A = 0̂ and B ∈ B(Un,k).
(5)

Theorem 6.2 The labelling (5) is an EL-labelling of L(Un,k) where the labels on any
saturated chain are all distinct. Furthermore, the number of strictly decreasing 0̂-1̂
chains is

(

k−1
n−k

)

.
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Proof First consider A ≤ B where A 6= 0̂. Note that any saturated A-B chain has
distinct labels. This is because in order for a label to be used twice it would have to
be subtracted from one of the sets of the chain. But element l can only be subtracted
when moving up from a set at rank l, and at higher ranks l is not permitted as an
element. Furthermore, equations (4) and (5) show that a label sequence completely
determines a corresponding chain, if one exists, since the element to be subtracted is
predetermined by the rank. In addition, the restriction A 6= 0̂ and equation (4) ensure
that any two saturated A-B chains use the same set of labels. So if a strictly increasing
chain exists, then it is unique.

To show existence of a strictly increasing chain, we use the notion of an inversion
in a sequence (l1, l2, . . . , lk) which is a pair (li, lj) such that i < j and li > lj . Let C be
a saturated A-B chain that has the fewest number of inversions. If C is increasing then
we are done. Otherwise C must have a descent, i.e., an inversion of the form (li, li+1).
Suppose that the portion of C corresponding to this descent is Ai−1, Ai, Ai+1. Then
li > li+1 ≥ ρ(Ai+1). Define A′

i = Ai − {li} ⊎ {li+1}. From the inequalities just given it
follows that ρ(A′

i) = min(A′
i) = min(Ai) = ρ(Ai). So replacing Ai by A′

i in C gives a
chain C ′ whose label sequence is l(C) with li and li+1 switched. Thus l(C ′) has fewer
inversions than l(C), a contradiction. It is interesting to note that we have actually
proved the stronger statement that if A 6= 0̂ then the interval from A to B has an Sn

EL-labeling in the sense of McNamara [11] and McNamara and Thomas [12].
Now consider the case where A = 0̂. Much of what we have already proved goes

through in this case. In particular, the labels on any saturated 0̂-B chain are distinct
and a given sequence of labels determines a chain uniquely if it exists at all. (The
latter is most easily seen by working down from B.) This time we explicitly construct
the strictly increasing saturated 0̂-B chain. Consider the min(B) largest labels in the
set B ⊎ {1, 2, . . . , min(B) − 1}. Arranging these labels in increasing order shows that
the desired chain exists since they are all sufficiently large to be added at the necessary
point in the chain (or subtracted if one moves down).

To compute the number of decreasing 0̂-1̂ chains, note that n must be a label on any
saturated 0̂-1̂ chain since it must be added at some point, and if it is added in the first
cover then it is also the maximum. So for the chain to be decreasing the first label must
be n. Similarly, the last label must be an element of 1̂ = {n−k+1, n−k+2, . . . , n}. So
we need to pick ρ(1̂)− 1 = n− k labels from |1̂−{n}| = k− 1 possible. As usual, each
of these choices will produce a unique decreasing chain if it exists. But since all of the
elements which could be chosen are at least as big as ρ(1̂) they do indeed correspond
to a chain. Thus there are

(

k−1
n−k

)

such chains and we are done.

II. Forman [7] has introduced a discrete analogue of Morse theory as a way of
studying CW complexes by collapsing them onto smaller, more tractable, complexes
of critical cells. These techniques can be used to compute the homology of a complex
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even when it is not shellable. Are the nonshellable complexes which we have considered
amenable to Forman’s technique?

III. Las Vergnas defined a third ordering on the bases of an ordered matroid. Let
the pseudo-height of a base B ∈ B(M) be

hM(B) = |ExtM(B)| − | IntM(B)| + rk(M)

where IntM(B) is the set of internally active elements of B in M . Then from [9,
Proposition 6.3] we obtain hM(A) < hM(B) whenever either A <ext

M B or A <int
M B. So

there is a well-defined external-internal order ≤exin
M on B(M) given by

A ≤exin
M B if and only if A ≤ext

M B or A ≤int
M B

with corresponding lattice Lexin(M). We have been unable to find an analogue of
Theorem 3.1 for this lattice. It would be very interesting to do so.
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Vergnas, and Howard Thompson for helpful discussions and references.

References

[1] A. Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer.
Math. Soc. 260 (1980), 159–183.

[2] A. Björner, Homotopy type of posets and lattice complementation, J. Combin.
Theory Ser. A 30 (1981), 90–100.

[3] A. Björner, The Homology and Shellability of Matroids and Geometric Lattices
in “Matroid Applications,” N. White ed., Encyclopedia of Mathematics and its
Applications, Vol. 40, Cambridge University Press, Cambridge, 1992, 226–283.

[4] A. Björner, Topological methods, in “Handbook of Combinatorics,” R. Graham,
M. Grötschel, and L. Lovász eds., North-Holland, New York, NY, and MIT Press,
Cambridge, MA, 1995, 1819–1872.

[5] A. Blass, Homotopy and homology of finite lattices, preprint.
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