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Abstract

The Curtis-Tits-Phan theory as laid out originally by Bennett and Shpectorov
describes a way to employ Tits’ lemma to obtain presentations of groups related
to buildings as the universal completion of an amalgam of low-rank groups. It
is formulated in terms of twin-buildings, but all concrete results so far were con-
cerned with spherical buildings only. We describe an explicit flip-flop geometry
for the twin-building of type Ãn−1 associated to k[t, t−1] on which a unitary group
SUn(k[t, t−1], β), related to a certain non-degenerate hermitian form β, acts flag-
transitively and obtain a presentation for this group in terms of a rank-2 amalgam
consisting of unitary groups. This is the most natural generalization of the original
result by Phan for the unitary groups.
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1 Introduction

In the revision of the classification of finite simple groups one of the important steps
requires one to prove that if a simple group G (the minimal counterexample) contains a
certain amalgam of subgroups that one normally finds in a known simple group H then
G is isomorphic to H. A geometric approach to recognition theorems was initiated in
[BGHS03, BeSh04, GHS03]. It was formulated in terms of twin-buildings, but so far the
only concrete results deal with spherical buildings. In the present paper we obtain an
explicit amalgamation result for the unitary group SUn(k[t, t−1], β) associated to a unitary

flip of the affine twin-building of type Ãn−1 over k[t, t−1]. Here k is a field of order at least
16, and β is a non-degenerate σ-hermitian form, for a suitable k(t)-involution σ. Similar
groups have been considered in [Ca05], [GlGrHa] and [KaPe85] for complex numbers.
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Figure 1: The diagram Ãn−1.

Let us describe the general geometric approach. We consider a group G which is
either semi-simple of Lie type or a Kac-Moody group. Let ∆ = (∆+,∆−) be the twin
building associated to G via its twin BN -pair. We first define a flip to be an involutory
automorphism ϕ of ∆ that interchanges the two halves, preserves distances and co-distances
and takes at least one chamber to an opposite.

Given a flip ϕ, construct ∆ϕ as the chamber system whose chambers are the pairs
of opposite chambers (c, cϕ) of ∆. Let Gϕ be the fixed subgroup under the ϕ-induced
automorphism of G. We refer to [BGHS03] for details on the construction. In most cases,
the pre-geometry Γϕ is transversal and residually connected. A result by Tits then asserts
that the geometry Γϕ is simply connected if and only if Gϕ is the universal completion of
the amalgam of maximal parabolic subgroups for its action on Γϕ.

An induction procedure allows us to replace this amalgam by a related amalgam A(2)

of rank at most two groups without altering its universal completion. In the present paper
we describe this amalgam A(2) in Section 10. Our main result is then the following.

Theorem 1 Let n ≥ 4. Let k be infinite or k = Fq2 with q ≥ 4. Then, the group
SUn(k[t, t−1], β) is the universal completion of the amalgam A(2).

For completeness we will describe a Phan system for the amalgamA(2). We will say that
subgroups U1 and U2 of SU3(k) form a standard pair whenever each Ui is the stabilizer in
SU3(k) of a non-singular vector vi (vi is then unique up to a scalar factor) and, furthermore,
v1 and v2 are perpendicular. By Witt’s theorem, standard pairs are exactly the conjugates
of the pair formed by the two subgroups SU2(k) arising from the 2 × 2 blocks on the
main diagonal. Standard pairs in PSU3(k) will be defined as the images under the natural
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homomorphism of the standard pairs from SU3(k). We say that a group G possesses a weak

Phan system of type Ãn−1 if G contains subgroups Ui
∼= SU2(k), where i = 0, 1, . . . , n− 1

and Ui,j, for 0 ≤ i < j ≤ n− 1 so that the following hold (taking subscripts modulo n).

(wP1) if j − i 6= 1 then Ui,j is a central product of Ui and Uj,

(wP2) for i = 0, 1, . . . , n − 1, Ui and Ui+1 are contained in Ui,i+1, which is isomorphic to
SU3(k) or PSU3(k). Moreover, Ui and Ui+1 form a standard pair in Ui,i+1, and

(wP3) the subgroups Ui,j with 0 ≤ i < j ≤ n− 1 generate G.

Using this terminology, Theorem 1 can be restated as follows.

Theorem 2 The group SUn(k[t, t−1], β) has a weak Phan system of type Ãn−1 when n ≥ 4
and k is infinite or k = Fq2 with q ≥ 4. Moreover any group admitting a weak Phan
system isomorphic (as an amalgam) with the one in SUn(k[t, t−1], β) is a quotient of
SUn(k[t, t−1], β).

The paper is organized as follows. In Section 2 we review some basic notions on ge-
ometries, automorphism groups, simple connectedness and amalgams, twin-buildings and
(geometric) flips. In Section 3 we describe the affine (twin-) building ∆ of type Ãn−1 over
the field of rational functions k(t), over some field k in terms of a concrete lattice-chain
model. In Section 4 we describe a flip ϕ for ∆ using a σ-hermitian form β. We assume that
σ 6= id |k and prove that in this case, ϕ is what we call geometric. In Section 5 we charac-
terize the flip-flop geometry Γϕ for ϕ and in Section 6 we describe its residues. We prove
that in most cases, Γϕ is transversal, connected, and residually connected. In Section 7
we show that the geometry Γϕ and all residues of rank at least 3 are simply connected
with few exceptions. This is where the requirement that k has order at least 16 and n ≥ 4
comes in.

In Section 9 we describe the flag-transitive action of SUn(k[t, t−1], β) on Γϕ. In Sec-
tion 10, we describe the amalgam A(2) of parabolic subgroups of rank 2 for this action in
some detail. In the Section 8 we reprove some of the needed results from Bennett and
Shpectorov [BeSh04] and Gramlich et al. [GHMS], but now for infinite fields.
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2 Preliminaries

2.1 Geometries

For our viewpoint on geometries we’ll use the following definitions from Buekenhout [Bu95].

Definition 2.1 A pre-geometry over a type set I is a triple Γ = (O, typ, ?), where O is
a collection of objects or elements, I is a set of types, ? is a binary symmetric and reflexive
relation, called the incidence relation and typ:O → I is a type function such that whenever
X ? Y , then either X = Y or typ(X) 6= typ(Y ).

The rank of the pre-geometry Γ is the size of typ(O). A flag F is a (possibly empty)
collection of pairwise incident objects. Its type (resp. cotype) is typ(F ) (resp. I − typ(F )).
The rank of F is rank(F ) = | typ(F )|. The type of F is typ(F ) = {typ(X) | X ∈ F}. A
chamber is a flag C of type I. A J-flag is a flag of type J .

A pre-geometry Γ is a geometry if typ(O) = I and if Γ is transversal, that is, if any flag
is contained in a chamber.

The incidence graph of the pre-geometry Γ = (O, typ, ?) over I is the graph (O, ?). This
is a multipartite graph whose parts are indexed by I. We call Γ connected if its incidence
graph is connected.

The residue R of a flag F is the pre-geometry ResΓ(F ) = (OF , typ |OF
, ?|OF

) over
I − typ(F ) induced on the collection OF of all objects in O − F incident to all elements
of F . The type of the residue R is the cotype of F . We call Γ residually connected if for
every flag of corank at least 2 the corresponding residue is connected.

We will mostly be working with connected, residually connected geometries over a set
I.

2.2 Automorphism groups and amalgams

Definition 2.2 An automorphism group G of a pre-geometry Γ is a group of permutations
of the collection of objects that preserve type and incidence. We call G flag-transitive if
for any J ⊆ I, G is transitive on the collection of J-flags.

Let G be a flag-transitive group of automorphisms of a geometry Γ over an index set
I. Fix a chamber C. The standard parabolic subgroup of type J ⊆ I is the stabilizer in G
of the residue of type J on C.

Definition 2.3 In this paper we shall use the following definition of an amalgam of
groups. Let (B,≺) be a meet-semilattice with minimal element 0̂ in which every maximal
chain has length s. An amalgam over (B,≺) is a collection of groups A = {Aβ | β ∈ B}
together with a system of homomorphisms Φ = {ϕβ,γ:Aβ → Aγ | β ≺ γ} satisfying
ϕγ,δ ◦ ϕβ,γ = ϕβ,δ whenever β ≺ γ ≺ δ. The number s is called the rank of A.

A completion of A is a group G with the property that, for each β ∈ B, there exists
a homomorphism fβ:Aβ → G such that for any α ≺ β we have fα = fβ ◦ φα,β and
G = 〈fβ(Aβ) | β ∈ B〉. The universal completion or amalgamated sum of A is then a group

Ĝ whose elements are words in the elements of the groups in A subject to the relations
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between the elements of Aβ for any β ∈ B and in which for each β ≺ γ each a ∈ Aβ is

identified with ϕβ,γ(a) ∈ Aγ. We then have a homomorphism ·̂ :A → Ĝ.
We note that for the appropriate choice of (B,≺) this definition of an amalgam and

universal completion coincides with those given in [Se80, Ti86b].

Note 2.4

(i) For each β ∈ B we have a homomorphism ·̂ :Aβ → Âβ ≤ Ĝ, which is surjective, but
not necessarily injective.

(ii) For β, γ ∈ B with β ≺ γ we have Âβ ≤ Âγ.

(iii) For β, γ ∈ B we have Âβ∧γ ≤ Âβ ∩ Âγ, but we do not a priori assume equality here.

Example 2.5 Let G be a group acting flag-transitively on a geometry Γ over an index
set I. Let C be a chamber and, for every subset J ⊆ I with |J | ≤ 2 let PJ be the standard
parabolic subgroup of type J in G. Then, for M ⊆ K ⊆ I we have the natural inclusion
homomorphisms ϕM,K :PM → PK . Hence A = {PJ | J ⊆ I, |J | ≤ 2} is an amalgam over

B = {J ⊆ I | |J | ≤ 2} where M ≺ K ⇐⇒ M ⊂ K. For the universal completion Ĝ of A
we clearly have a surjective homomorpism τ : Ĝ→ G.

2.3 Simple connectedness and amalgams

In order to introduce the main tool of this paper, namely Lemma 2.6 we need the notions
of (closed) paths, (universal covers), simple connectedness, and the fundamental group.

In [Ti86b, Fo66, Ba80, Qu78] these notions are introduced in the context of (the face
poset of) a simplicial complex in such a way that many classical results, such as can be
found in [Sp81] continue to hold. In the present paper we use definitions geared towards
geometries. They are equivalent to those for the (face poset of) the simplicial complex,
called the flag complex consisting of all flags of Γ ordered by inclusion. For a more extensive
treatment of related issues see e.g. [Ti86a, Pas94].

Let Γ be a connected geometry over the finite set I. A path of length k is a path x0, . . . , xk

in the incidence graph. We do not allow repetitions, that is, xi 6= xi+1 for all 0 ≤ i < k.
A cycle based at an element x is a path x0, . . . , xk in which x0 = x = xk. Two paths
γ and δ are homotopy equivalent if one can be obtained from the other by inserting or
eliminating cycles of length 2 or 3. We denote this by γ ' δ. The homotopy classes of
cycles based at an element x form a group under concatenation. This group is called the
fundamental group of Γ based at x and is denoted Π1(Γ, x). If Γ is (path) connected, then
the isomorphism type of this group does not depend on x and we call this group simply
the fundamental group of Γ and denote it Π1(Γ). We call Γ simply connected if Π1(Γ) is
trivial.
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The following result, which will be referred to as Tits’ Lemma, is a consequence of [Ti86b,
Corollaire 1].

Lemma 2.6 Given a group G acting flag-transitively on a geometry Γ. Fix a maximal flag
C. Then G is the universal completion of the amalgam consisting of the standard maximal
parabolic subgroups of G with respect to C if and only if Γ is simply connected.

2.4 Buildings and twin-buildings

In this subsection, we give the basic definitions and a few facts on buildings and twin-
buildings. We make use of the following sources: [Ab96, AbRo98, AbVa01, Ro89, Ro03,
Ti86a, Ti92]. Let I = {0, 1, . . . , n − 1} and let M = (mij) be a Coxeter diagram over I.
Let (W,S) be the Coxeter system of type M , where S = {si | i ∈ I}. A building of type M
is a pair (∆, δ) where ∆ is a set, whose elements are called chambers, and δ : ∆×∆ −→ W
is a distance function satisfying the following axioms. Let x, y ∈ C and w = δ(x, y). Then

(B1) w = 1 if and only if x = y;

(B2) if z ∈ ∆ is such that δ(y, z) = s ∈ S, then δ(x, z) = w or ws; furthermore if
l(ws) = l(w) + 1, then δ(x, z) = ws; and

(B3) if s ∈ S, there exists z ∈ ∆ such that δ(y, z) = s and δ(x, z) = ws.

For any subset J ⊂ I, MJ denotes the subdiagram of M defined over J and WJ will be
the subgroup of W having generator set SJ = {si}i∈J . The pair (WJ , SJ) then is a Coxeter
system with diagram MJ .

The residue of type J , or J-residue, on a chamber c ∈ ∆ is the inverse image of WJ

under the mapping δ(c, ·) : ∆ → W . This is a building of type MJ . The rank of a J-residue
is the number |J |. We will call a residue of type I − {i} (i ∈ I) an object of type i and a
residue of type {i} (i ∈ I) an i-panel.

Example 2.7 Taking W and defining δ(x, y) = x−1y we obtain a building of type M in
which each panel has exactly two chambers. This is called the Coxeter building of type M .
A reflection in W is a conjugate of one of the generators. Each reflection r ∈ W fixes a
subcomplex Mr of codimension 1 of the Coxeter complex. This subcomplex (the wall of r)
divides the chambers of W in two disjoint convex sets called opposite roots (they will be
denoted by α and −α.

An apartment of the building ∆ is a subset Σ ⊆ ∆ that is isometric to the Coxeter
building of type M . One can define roots in the building using this identification.

Since apartments are convex in ∆ with respect to δ, and any two chambers are contained
in some apartment Σ, the distance between any two chambers is given by their distance
inside an apartment. As a consequence, a building is uniquely determined by the collection
of chambers together with a system of apartments.

Given two buildings B+ = (C+, δ+), B− = (C−, δ−) of the same type M , a codistance
(twinning) is a map δ∗ : (C+×C−)∪ (C−×C+) −→ W such that the following axioms hold
where ε = ±, x ∈ Cε, y ∈ C−ε and w = δ∗(x, y):
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(T1) δ∗(y, x) = w−1;

(T2) if z ∈ C−ε such that δ−ε(y, z) = s ∈ S and l(ws) = l(w)− 1, then δ∗(x, z) = ws; and

(T3) if s ∈ S, there exists z ∈ C−ε such that δ−ε(y, z) = s and δ∗(x, z) = ws.

A twin building of type M is a triple ∆ = ((∆+, δ+), (∆−, δ−), δ∗), where (∆+, δ+) and
(∆−, δ−) are buildings of type M and δ∗ is a twinning between ∆+ and ∆−.

We call c+ ∈ ∆+ and c− ∈ ∆− opposite if δ∗(c+, c−) = 1. The opposition relation is
denoted opp.

By the results of Abramenko and Van Maldeghem in [AbVa01], given two isomorphic
buildings in order to make this into a twin-building, it suffices to define a sufficiently nice
opposition relation (a 1-twinning).

If in (T3) above l(ws) = l(w)+1, then the chamber z satisfying δ∗(x, z) = ws is unique
in the s-panel π on y. In this case we call z the projection of x onto π and denote it
projπ(x). More generally, if R is a J-residue on y, where J is spherical, there is a unique
chamber z ∈ R such that δ∗(x, z) has maximal length among all codistances between x and
a chamber on R. In this case we call z the projection of x onto R and write z = projR(x).

A twin apartment of ∆ is a pair Σ = (Σ+,Σ−) in which, for each ε = ±, the set Σε is
an apartment of ∆ε such that (Σ+,Σ−, δ∗) forms a twin-building. Apartments of ∆ε that
belong to a twin-apartment are called interior (see e.g. [Ro03]).

A pair α = (α+, α−) is called a twin root if there exists a twin apartment Σ = (Σ+,Σ−)
such that αε is a root in Σε and α− = − oppΣ (α+). By [AbRo98, Lemma 3], twin roots
as well as twin-apartments are coconvex. Following loc. cit. we define a set of chambers
X to be coconvex if, given a chamber x ∈ X and a panel π with π ∩X 6= ∅ belonging to
different halves of ∆, the chamber projπ(x) belongs to X. Following loc. cit. we define the
coconvex hull of chambers x− ∈ ∆− and x+ ∈ ∆+ to be C(x+, x−) =

⋂
C C, where C runs

through all coconvex subsets containing both x+ and x−.

Lemma 2.8 Let xε ∈ ∆ε and let Rε be a spherical residue of ∆ε for ε = ±. Then,

(a) C(x+, x−) =
⋂

(α+,α−) α+ ∪ α−, where (α+, α−) runs through all twin-roots of any
twin-apartment containing both x+ and x−.

(b) In particular, if C(x+, x−) = (C+, C−) for some subsets Cε ⊆ ∆ε, then Cε is convex
in ∆ε.

(c) projRε
(x−ε) = Rε ∩

⋂
uε∈Rε

C(uε, x−ε).

Proof (a) Is in [AbRo98] and (b) follows from (a) since roots of buildings are convex (see
above).

(c) Let zε = projRε
(x−ε). Then using the definition of coconvexity and induction on the

length of a minimal gallery from xε to zε we find that zε ∈ C(uε, x−ε) for all uε ∈ Rε. On
the other hand, Rε ∩

⋂
uε∈Rε

C(uε, x−ε) ⊆ Rε ∩ C(zε, x−ε) and by definition of projection,
the latter set is the singleton {zε}. �
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The root group of αε is the following

Uαε = {g ∈ Aut(∆ε) | g fixes every chamber having a panel π with |π ∩ αε| = 2}. (2.1)

The twin-buildings we will be dealing with are of Moufang type, which means that for each
root αε the root group Uαε acts regularly on the apartments of ∆ε containing αε. Using
the twinning, one then finds that if α = (α−, α+) is a twin-root, we have Uαε = Uα−ε .

Given two opposite chambers c+ ∈ ∆+ and c− ∈ ∆−, there is a unique twin apartment
Σ = (Σ+,Σ−) such that c+ ∈ Σ+ and c− ∈ Σ−. We denote this apartment by Σ(c+, c−).
We have Σε = {dε ∈ ∆ε | δ∗(c−ε, dε) = δε(cε, dε)}. See Tits [Ti92].

2.5 Geometric flips of twin-buildings

A flip ϕ of the twin-building ∆ is an automorphism ϕ: ∆ → ∆ of order 2 interchanging
∆+ and ∆− such that

• for any cε, dε ∈ ∆ε, c−ε, d−ε ∈ ∆−ε, we have

δ−ε(c
ϕ
ε , d

ϕ
ε ) = δε(cε, dε)

δ∗(c
ϕ
−ε, d

ϕ
ε ) = δ∗(c−ε, dε),

• there is a pair of chambers (c+, c−) ∈ opp such that cϕ+ = c−.

Note that ϕ: ∆+ → ∆− and ϕ: ∆− → ∆+ are type-preserving isomorphisms.
We’ll denote ∆ϕ = {(c+, cϕ+) ∈ ∆+ × ∆− | c+ opp cϕ+}. We’ll define Γϕ to be the

incidence structure whose objects of type i ∈ I are those I − {i}-residues of ∆+ that
contain a chamber c+ where (c+, c

ϕ
+) ∈ ∆ϕ. Two such objects are incident whenever they

intersect in a chamber c+ with (c+, c
ϕ
+) ∈ ∆ϕ.

A geometric flip ϕ of the twin-building ∆ is an automorphism ϕ: ∆ → ∆ of order 2
interchanging ∆+ and ∆− such that

• for any cε, dε ∈ ∆ε, c−ε, d−ε ∈ ∆−ε, we have

δ−ε(c
ϕ
ε , d

ϕ
ε ) = δε(cε, dε)

δ∗(c
ϕ
−ε, d

ϕ
ε ) = δ∗(c−ε, dε),

• given a panel π ∈ ∆ε the map projπ ◦ϕ: π → π is not the identity.

In Gramlich et al. [GHMS] a flip is defined to be what we call a geometric flip here. It
follows immediately that a geometric flip is a flip as defined above, but the converse is
unknown.

Lemma 2.9 Let ϕ be a flip. Let c ∈ ∆ε be a chamber and let ∅ 6= J ⊆ I such that for
each j ∈ J , the j-object on c contains a chamber that is opposite to its ϕ-image. Then,
δ∗(c, c

ϕ) ∈ WI−J . Moreover, if ϕ is geometric, then the I − J-residue on c contains a
chamber that is opposite to its ϕ-image.
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Proof Let j ∈ J and let R be the j-object on c and let d ∈ R be opposite to dϕ. Now let
γ = (c = c0, . . . , ck = d) be a minimal gallery in R from c to d of type i1 · · · ik. By (T2)
and (T3) if δ∗(x, y) = w and δ−ε(y, z) = s, then δ∗(x, z) ∈ {w,ws}. Using this repeatedly
and the fact that δ∗(d, d

ϕ) = 1 we find that δ∗(c, c
ϕ) ∈ W{i1,...,ik} ≤ WI−{j}. Repeating this

for all j ∈ J we find that δ∗(c, c
ϕ) ∈

⋂
j∈J WI−{j} = WI−J .

Now assume that ϕ is geometric and let δ∗(c, c
ϕ) = w a reduced word of type il · · · i1 in

WI−J . Note that l(wsi1) = l(w) − 1 and let π be the i1-panel on c. Since ϕ is geometric,
there exists a chamber c1 ∈ π such that projπ(cϕ1 ) 6= c1. More precisely, one of the
following occurs. If projπ(πϕ) = c, then δ∗(c1, c

ϕ
1 ) = si1wsi1 of length l(w)− 2. Otherwise

δ∗(c1, c
ϕ
1 ) = wsi1 of length l(w)− 1. In either case δ∗(c1, c

ϕ
1 ) ∈ WI−J so that c1 belongs to

the I − J-residue on c. Repeating this argument we eventually find a chamber d in the
I − J-residue on c opposite to dϕ. �

Let Fϕ = {R ⊆ ∆+ | R a residue with c opp cϕ for some c ∈ R}.

Corollary 2.10 Let ϕ be a geometric flip. Then Fϕ is the flag complex of Γϕ. In partic-
ular, Γϕ is transversal, that is, every flag is contained in a chamber.

Proof Clearly all objects of Γϕ belong to Fϕ. Therefore it suffices to show that for any
two residues RJ , RK ∈ Fϕ of type I − J and I −K respectively such that RJ ∩ RK 6= ∅
we have RJ ∩ RK ∈ Fϕ. Let c ∈ RJ ∩ RK and for any i ∈ J ∪ K let Ri be the i-object
on c. Then RJ ∩ RK =

⋂
i∈J∪K Ri, which is a residue of type I − (J ∪ K). Moreover,

since RJ , RK ∈ Fϕ also Ri ∈ Fϕ for all i ∈ J ∪K. It now follows from Lemma 2.9 with
R = RJ ∩RK and c that R ∈ Fϕ. �
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3 The affine twin building of type Ãn−1 over k(t)

In this section we introduce the necessary material on the twin-building ∆ = (∆+,∆−) of

type Ãn−1 over the field k(t) of rational functions over some suitable field k.
We shall view ∆ε mostly through a lattice-chain model as described in [AbNe02], al-

though we also draw upon [AbVa01, Ga97, Ro89, Ti92]. We shall now describe this model
in some detail.

Let V be a vector space of dimension n over k(t). For ε ∈ {+,−}, let vε be a discrete
valuation on k(t) such that vε(t

ε1) = 1, and let Oε be the valuation ring with respect to vε.

Definition 3.1 An Oε-lattice is a free Oε-submodule Λ of V of rank n so that V = k(t)Λ.
Such lattices are of the form

Λ =
n⊕

i=1

Oεbi,

where {b1, b2, . . . , bn} is a k(t)-basis for V . In this case we call {b1, b2, . . . , bn} a lattice basis
for Λ.

A chain · · · ⊂ Λi ⊂ Λi+1 ⊂ · · · of Oε-lattices is called admissible if the set {Λi} is
invariant under multiplication by integral powers of t. The admissible chain generated by
the lattice Λ will be denoted [Λ].

For each ε, we now describe a geometry Γε. The collection of all admissible chains of
Oε-lattices partially ordered by inclusion is the collection of flags of Γε. More precisely, the
objects of this geometry are the minimal admissible chains of Oε-lattices. In the case of an
O+-lattice Λ, these are of the form · · · ⊂ tiΛ ⊂ ti+1Λ ⊂ · · · and in the case of an O−-lattice
Λ of the form · · · ⊂ t−iΛ ⊂ t−(i+1)Λ ⊂ · · ·. Two objects are called incident whenever their
union is again an admissible Oε-lattice.

We now describe the chambers of Γε. These are the maximal admissible chains of
Oε-lattices. They are of the form

c+(a1, a2, . . . , an) = · · · ⊃ Λ+
0 ⊃ Λ+

1 ⊃ · · · ⊃ Λ+
n−1 ⊃ tΛ+

0 ⊃ · · ·
c−(a1, a2, . . . , an) = · · · ⊂ Λ−

0 ⊂ Λ−
1 ⊂ · · · ⊂ Λ−

n−1 ⊂ tΛ−
0 ⊂ · · ·

where {a1, a2, . . . , an} is a k(t)-basis for V and

Λε
0 = 〈a1, . . . , an−1, an〉Oε ,

Λε
1 = 〈ta1, . . . , an−1, an〉Oε ,

...
...

Λε
n−1 = 〈ta1, ta2, . . . , tan−1, an〉Oε .

We call (a1, . . . , an) an ordered chain basis for this chamber. Two chambers are i-adjacent
if their objects of type j 6= i are equal.

The set of chambers of Γε is in fact the collection of chambers of a building ∆ε. We
now describe the system of apartments A(k(t)) of ∆ε. Given any k(t)-basis {a1, . . . , an}
for V , the collection of admissible chains of Oε-lattices

Σε{a1, . . . , an} = {cε(tk1aρ(1), . . . , t
knaρ(n)) | k1, · · · , kn ∈ Z, ρ ∈ Sn}

10



is an apartment for ∆ε. Note that each chamber may have more than one such description.
The Weyl group W can now be identified with (Zn o Sn)/Z, where Z = 〈(1, . . . , 1)〉. The
set of designated generators is S = {ri}n−1

i=0 , where {ri}n−1
i=1 is the standard Coxeter system

for Sn and where r0 interchanges a0 with t−1an and an with ta0.
Note 3.2 The collection

A(k(t)) = {Σε{a1, . . . , an} | a1, . . . , an a k(t)-basis for V }

is a system of apartments for ∆ε. However, the system of all apartments is obtained in
the same manner after passing to the completion of k(t) with respect to vε as described in
[Ro89].

In order to define the type of an object (and also in order to define the opposition
relation) we shall need the following setup. Let A = k[t, t−1]. Fix a basis of reference
B = {b1, b2, . . . , bn} for V and let M be the A-module spanned by this basis.

The type of an Oε-lattice Λ (with respect to this basis of reference) is

typ(Λ) = εvε(det(g)) mod n,

where g ∈ GL(V ) is such that g(
⊕n

i=1Oεbi) = Λ. Clearly typ(tkΛ) = typ(Λ) + knmod n
for all k ∈ Z so that the type is well defined for minimal admissible chains. Given an
arbitrary admissible chain F of lattices, we set typ(F ) = {typ(Λ) | Λ ∈ F}.

After having defined the two buildings ∆+ and ∆−, we now define a twinning by
describing the opposition relation. We call two chambers c+ and c− opposite if they are of
the form c+(a1, a2, . . . , an) and c−(a1, a2, . . . , an) for some A-basis {a1, a2, . . . , an} of M.

Twin apartments are of the form Σ{a1, . . . , an} = (Σ+,Σ−), where, for each ε = ±,
Σε = Σε{a1, . . . , an}, for some A-basis {a1, . . . , an} for M. Twin roots are determined
by a reflection in W . For example, consider the twin-roots (α+, α−) and (−α+,−α−)
associated with the reflection interchanging the 1-adjacent chambers c+(a1, . . . , an) and
c+(a2, a1, a3, . . . , an). The chambers of α+ are those of the form c+(tk1aρ(1), . . . , t

knaρ(n)),
where kρ−1(1) > kρ−1(2) or kρ−1(1) = kρ−1(2) and ρ−1(1) < ρ−1(2). Moreover, the chambers
of α+ having a panel on the wall δα+ are of type c+(tk1aρ(1), . . . , t

knaρ(n)), where kρ−1(1) =
kρ−1(2) and ρ−1(1) + 1 = ρ−1(2). The root −α+ is defined similarly, but with the roles of 1
and 2 interchanged. Then α− = − oppΣ (α+) and −α− = − oppΣ (−α+).

4 A flip for the twin-building of type Ãn−1 over k(t)

In this section we first describe a flip ϕ for the twin-building of type Ãn−1 over k(t) and
then show that ϕ is in fact geometric.

4.1 The σ-hermitian form β

In this paper, σ denotes an automorphism of k(t) of order 2 such that

(a) σ preserves k,

(b) σ induces an isomorphism Oε → O−ε, for ε = ±.

11



Lemma 4.1 Let σ be as above. Then σ is given by

bσ
2

= b ∀b ∈ k
tσ = λt−1 for some λ ∈ kσ

where kσ is the fixed field of σ. In particular, if the norm Nσ: a 7→ aaσ is surjective, then
we may take λ = 1.

Proof Since σ2 = id and σ(k) = k, σ induces an automorphism of k of order 2. Now
v−(tσ) = 1 so there exists some n ∈ Z≥0, f(t) =

∑n
i=0 ait

i and g(t) =
∑n

i=0 bit
i with

an 6= 0 6= bn, and gcd(f(t), g(t)) = 1 such that

tσ = t−1f(t)

g(t)
.

Then,

t = tσ
2

= (t−1)σ

(
f(t)

g(t)

)σ

= (t−1)σ f
σ(tσ)

gσ(tσ)
= t

g(t)

f(t)
·
fσ(t−1 f(t)

g(t)
)

gσ(t−1 f(t)
g(t)

)

Here we define fσ(t) =
∑n

i=0 a
σ
i t

i and likewise for g. That is,

f(t) · gσ

(
t−1f(t)

g(t)

)
= g(t) · fσ

(
t−1f(t)

g(t)

)
Then, multiplying by (tg(t))n left and right, we get

f(t) ·
n∑

i=0

bσi f(t)itn−ig(t)n−i = g(t) ·
n∑

i=0

aσ
i f(t)itn−ig(t)n−i

Since g(t) occurs in all terms on the left except bσnf(t)n+1 6= 0, and gcd(f(t), g(t)) = 1, we
find that deg(g(t)) = 0. Hence also deg(f(t)) = 0 and we find tσ = t−1λ for some λ ∈ k.
Moreover, again since t = tσ

2
= tλ−1λσ, we have λσ = λ so that λ ∈ kσ. If λ = aaσ, then

(a−1t)σ = t−1a−σaaσ = (a−1t)−1. Thus, after replacing t by a−1t we have tσ = t−1. �

Note 4.2 From now on we shall assume that σ has the following properties.

(S) Nσ: k → kσ is surjective and tσ = t−1.

(H) Moreover, in order to prove Lemma 4.11, we shall also assume that σ|k 6= id.

Let β:V × V → k(t) be a σ-hermitian form. That is, it satisfies

β(λu1 + u2, v) = λβ(u1, v) + β(u2, v)
β(v, u) = β(u, v)σ

for all λ ∈ k(t) and u1, u2, v ∈ V . Moreover, it is non-degenerate in the sense that if
β(u, v) = 0 for all u ∈ V , then v = 0.

Lemma 4.3 If σ satisfies (S) and (H), then there exists a k(t)-basis for V that is or-
thonormal with respect to β.
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4.2 The flip ϕ induced by β

Define a non-degenerate σ-hermitian form β where σ satisfies (S) and (H), such that the
basis of reference for M is orthonormal with respect to β.

Define ϕ: ∆ → ∆ by setting

Λϕ = {v ∈ V | β(u, v) ∈ Oε ∀u ∈ Λ} (4.1)

for each Oε-lattice Λ.

Given an k(t)-basis C = {c1, . . . , cn} for V , then, since β is non-degenerate there exists a
basis C∗ = {c∗1, . . . , c∗n} such that

β(ci, c
∗
j) = δij for 0 ≤ i, j ≤ n.

We call C∗ the basis dual to C with respect to β.

Lemma 4.4 Let β be a σ-hermitian form and let ϕ be the associated map. Let C be a
basis for V and let C∗ be its dual basis with respect to β. Then,

(a) 〈C〉ϕOε
= 〈C∗〉O−ε.

(b) In particular, ϕ sends the apartment Σε(C) isometrically to Σ−ε(C
∗).

Proof Without loss of generality assume ε = +. Let Λ have O+-basis C = {c1, . . . , cn}
and let Λ∗ have O−-basis C∗ = {c∗1, . . . , c∗n}. Then, C∗ is an k(t)-basis for V . So let
v =

∑n
i=1 aic

∗
i . Then v ∈ Λϕ if and only if β(ci, v) = aσ

i ∈ O+ if and only if ai ∈ O−. This
shows that Λϕ = Λ∗, and (a) is proved.

Since for any k ∈ Z and u, v ∈ V we have β(tku, tkv) = β(u, v), it follows that

{tk1c1, . . . , t
kncn}∗ = {tk1c∗1, . . . , t

knc∗n}.

Hence, ϕ sends admissible chains to admissible chains, it preserves types, and since it
reverses containment, it also preserves i-adjacency. This proves (b). �

Corollary 4.5 ϕ induces a flip on ∆.

Proof By Lemma 4.4 ϕ is a type-preserving map between ∆ε and ∆−ε. Also, it sends
apartments of ∆ε to apartments of ∆−ε so that ϕ induces a distance preserving map
∆ε → ∆−ε. We now show that ϕ also preserves twin-apartments. Let C be an A-basis for
M and let C∗ be its dual basis with respect to β. Then C is obtained from B by some A-linear
isomorphism of M and C∗ is obtained from B by the adjoint of this isomorphism. Since σ
preserves A and in particular its units, the adjoint operator preserves GL(M). Therefore
the twin-apartment Σ{C} is sent to the twin-apartment Σ{C∗}. Since ϕ preserves the
opposition relation, it also preserves the codistance function δ∗.

Finally, since the basis B = {b1, . . . , bn} of reference for M is self-dual with respect to
β, ϕ interchanges the opposite chambers c+(b1, . . . , bn) and c−(b1, . . . , bn). �

13



4.3 The flip ϕ is geometric

The last part of this section is devoted to proving that the flip defined above is in fact
geometric in the sense of Lemma 2.9. Recall that this means that for any panel πε ∈ ∆ε

the maps ϕ: πε → πϕ
ε and projπε

: πϕ
ε → πε are not each other’s inverse. Clearly, if the latter

is not bijective, we are done. Therefore we consider the following slightly more general
situation. Here ε ∈ {+,−}.

(A1) πε is a panel on a chamber cε of ∆ε,

(A2) Σ = (Σ+,Σ−) is a twin-apartment with cε ∈ Σε,

(A3) πε ∩ Σε = {cε, dε}, for some chamber dε,

(PI) The projections projπε
: π−ε → πε are each other’s inverse. We assume that cε =

projπε
(c−ε) and dε = projπε

(d−ε).

Note that (A2) can be realized by [AbRo98, Lemma 1] due to Tits. Once we assume the
first part of (PI), the second part follows since twin-apartments are coconvex (Lemma 3 of
loc. cit.).

Lemma 4.6 Let ±(αε, α−ε) be the twin-roots of Σ determined by π−ε so that Σε = αε]−αε

and Σ−ε = α−ε ] −α−ε. Suppose cε ∈ αε. Then, c−ε = π−ε ∩ α−ε.

Proof By [AbRo98, Lemma 3], twin-roots are coconvex. Therefore if (α+, α−) is the twin-
root containing cε and meeting π−ε in a chamber c−ε, then by coconvexity the chamber
projπ−ε

(cε) belongs to α−ε ∩ π−ε. This chamber is c−ε. �

Lemma 4.7 The panels πε and π−ε determine the same twin-roots of Σ.

Proof Let ±(α+, α−) be the twin-roots of Σ determined by π+ such that c+ ∈ α+. Now
c− = π− ∩ α− and d− = π− ∩ −α− by Lemma 4.6. Therefore the panel π− is on the wall
of the twin-root (α+, α−). �

Lemma 4.8 Let α = (α+, α−) be a twin-root of ∆ and let πε be a panel intersecting the
root in a chamber cε. Then the projection map projπε

: π−ε → πε commutes with the action
of Uα, the root group of α.

Proof Let Σ = (Σ+,Σ−) be a twin-apartment on α. Let −α = (−α+,−α−) be the
opposite twin-root (so that α]−α = Σ). Then by Lemma 4.6, c− = projπ−(c+) ∈ α− ⊆ Σ−.

Let Uα be the root group of α and let the isomorphism (k,+) → Uα be given by
λ 7→ Uα(λ). Since Uα is regular on the collection of twin-apartments containing α we can
index these apartments as Σ(λ) = α]−αUα(λ). For each λ ∈ k, let dε(λ) ∈ ∆ε be such that
{cε, dε(λ)} = πε∩Σε(λ). Then, by Lemma 4.6 we have projπε

(d−ε(λ)) = dε(λ) ∈ −α−(λ) ⊆
Σ−(λ). We summarize this by saying that the maps projπ+

◦Uα(λ) and Uα(λ)◦projπ+
agree

on π− − {c−} → π+ − {c+}. �
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We shall now describe a way to parametrize the chambers in a panel by the 1-spaces of a
2-dimensional vector space over k. Suppose A = {a1, . . . , an} is an A-basis for M and let
Σ = Σ{a1, . . . , an}. Let c+ be a chamber of Σ. We may use an element from W to justify
the assumption that c+ = c+(a1, . . . , an). We consider the various panels on c+. If π+ is
an i-panel with 1 ≤ i ≤ n− 1, then the chambers of π+ − {c+} are given by

c+(a1, . . . , ai−1, ai+1, ai + λai+1, ai+2, . . . , an), λ ∈ k.

Using this description and the definition of root groups one verifies that Uα ≤ GL(V ) acts
as

Uα(λ):V → V
aj 7→ aj if j 6= i
ai 7→ ai + λai+1

If π+ is the 0-panel on c+, then the chambers of π+ − {c+} are given by

c+(t−1an + λa1, a2, . . . , an−1, ta1), λ ∈ k.

In this case Uα acts as
Uα(λ):V → V

aj 7→ aj if j 6= n
an 7→ an + λta1

A reasoning similar to the one for c+ yields a description for the panel π− on c−. We
point out though that in determining the chambers of the panel π− one should take the
reversal map into account (see Ronan [Ro03]).

From now, in addition to assumptions (A1-A3, PI), we add the following assumption:

(A4) π+ has type 1,

(F1) π− = πϕ
+.

Let
c+ = c+(a1, . . . , an)
c− = c−(tk1ai1 , . . . , t

knain).

In order to ensure that 〈tk1ai1 , . . . , t
knain〉O− has type 0, we suppose that k1, . . . , kn ∈ Z

are such that
∑n

i=1 ki = 0. Also assume {i1, . . . , in} = {1, . . . , n}. Since π− is on the wall
determined by the panel π+, the description of these panels at the end of Section 3 tells us
that i1 = 2 and i2 = 1 and k1 = k2.

Let P be an k-vector space with basis p1 and p2. We define a map ψ+: π+ → PG(P ) as
follows.

ψ+: π+ → PG(P )
c+(a2, a1 + λa2, a3, . . . , an) 7→ 〈p1 + λp2〉 for all λ ∈ k

c+(a1, . . . , an) 7→ 〈p2〉.
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We similarly define a map ψ−: π− → PG(P ) as follows.

ψ−: π− → PG(P )
c−(tk1(a1 + λa2), t

k1a2, t
k3a3, . . . , t

knan) 7→ 〈p1 + λp2〉 for all λ ∈ k
c−(tk1a2, t

k1a1 . . . , t
knan) 7→ 〈p2〉.

We call ψ+ a projective identification for π+ with respect to the ordered basis {a1, . . . , an}.
We now have the following description of the projection map.

Lemma 4.9 With respect to the projective identifications ψ+ and ψ−, the projection map
projπε

: π−ε → πε is induced by the identity map on P .

Proof This follows immediately from Lemma 4.8. �

Lemma 4.10 Suppose π is a panel in ∆+ containing chambers c and d. Let X = (x1, . . . , xn)
and Y = (y1, . . . , yn) be ordered bases such that

c = c+(x1, . . . , xn) = c+(y1, . . . , yn)
d = c+(x2, x1, x3, . . . , xn) = c+(y2, y1, y3, . . . , yn).

Then, under the projective identifications ψX and ψY for π with respect to X and Y , the
identity map on π is induced by a k-linear map on P .

Proof Without loss of generality we may assume that π has type 1. Since π has type 1,
the type i-elements on c and d are the same for all i 6= 1. Therefore we can view π as
a panel in the residue of the 0-object Λ0 = 〈x1, . . . , xn〉+ = 〈y1, . . . , yn〉+ that is, in the
k-vector space Λ0/tΛ0. Since all the subspaces spanned by subsets of {x1, x2} are equal to
the subspaces spanned by the corresponding subsets of {y1, y2} we find that modulo tΛ0

we have y1 = α1x1 and y2 = α2x2 for some non-zero α1, α2 ∈ k. Moreover, the identity
map on the remaining chambers of π is now given by sending y1 + λy2 7→ α1x1 + λα2x2.
So, if ψY and ψX are the identification maps with respect to Y and X, then

ψX ◦ idπ ◦ψ−1
Y : PG(P ) → PG(P )

〈p1 + λp2〉 7→ 〈p1 + λα2

α1
p2〉

〈p2〉 7→ 〈α2

α1
p2〉

This proves the claim. �

Lemma 4.11 The flip ϕ is geometric.

Proof If projπ(πϕ) is a single chamber of π there is nothing to prove.
Let π+ ⊆ ∆+ be a panel such that projπ+

◦ϕ: π+ → π+ is the identity. Without loss of
generality we may assume that πε has type 1. Let π− = πϕ

+ and let cε, dε ∈ πε be such that
cϕε = c−ε and dϕ

ε = d−ε. Then, by the discussion preceding Lemma 4.9, we have

c+ = c+(a1, . . . , an)
d+ = c+(a2, a1, a3, . . . , an)
c− = c−(tka2, t

ka1, t
k3ai3 , . . . , t

knain)
d− = c−(tka1, t

ka2, t
k3ai3 , . . . , t

knain)
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Let A∗ = {a∗1, . . . , a∗n} be the dual basis of A = {a1, . . . , an} so that for each λ ∈ k the
dual basis for {a2, a1 + λa2, a3, . . . , an} is {a∗2 − λσa∗1, a

∗
1, a

∗
3, . . . , a

∗
n}. Moreover, for each

λ ∈ k we have

c+(a2, a1 + λa2, a3, . . . , an)ϕ = c−(a∗2 − λσa∗1, a
∗
1, a

∗
3, . . . , a

∗
n).

At the same time, since projπ+
◦ϕ is the identity, we have

c−(a∗2 − λσa∗1, a
∗
1, a

∗
3, . . . , a

∗
n) = c−(tk(a1 + λa2), t

ka2, t
k3ai3 , . . . , t

knain).

Let ψε be the projective identification for πε with respect to A and ψ∗ be the projective
identification for π− with respect to A∗. Then by Lemmas 4.10 and 4.9, the composition
ψ∗ ◦ projπ− ◦ ψ

−1
+ = (ψ∗ ◦ ψ−1

− ) ◦ (ψ− ◦ projπ− ◦ ψ
−1
+ ) is linear. On the other hand, by

assumption, this composition is equal to ψ∗ ◦ ϕ ◦ ψ−1
+ . By examining the correspondence

c+(a2, a1 + λa2, a3, . . . , an)ϕ = c−(a∗2 − λσa∗1, a
∗
1, a

∗
3, . . . , a

∗
n).

we find that on P this map is given by

ψ∗ ◦ ϕ ◦ ψ−1
+ : P → P

p1 + λp2 7→ p1 − λσp2

p2 7→ p2.

Since σ 6= id |k, this map is not linear, and hence is different from ψ∗ ◦ projπ− ◦ψ
−1
+ . This

contradicts the fact that projπ+
◦ϕ is the identity. �

5 The flip-flop geometry Γϕ and β-orthogonal A-bases

Let σ and β be as in Section 4. As proved in Corollary 2.10 the set Fϕ is the flag complex of
Γϕ. In this section we shall describe a way to recognize elements of Fϕ among all residues
in ∆+.

Proposition 5.1 Let a1, . . . , an be an A-basis for M. If ϕ interchanges the opposite cham-
bers c+(a1, . . . , an) and c−(a1, . . . , an), then {a1, . . . , an} is orthogonal with respect to β.

Proof Let A∗ = {a∗1, . . . , a∗n} be the dual basis of A = {a1, . . . , an} with respect to β.
Then, c−ε = cϕε = c−ε(a

∗
1, . . . , a

∗
n) for ε = ±. Now let Σ be the unique twin-apartment

containing c− and c+. Then, Σ = Σ{a1, . . . , an}. We now claim that Σ = Σ{a∗1, . . . , a∗n}.
Let T ∈ GLn(A) be the transition matrix from B to A. Then, the transition matrix from
B to A∗ is the adjoint T ∗ of T with respect to β, that is T ∗ = T tσ ∈ GLn(A). Therefore
Σ{a∗1, . . . , a∗n} is a twin-apartment on c+ and c−. Since such apartments are unique, our
claim is proved. The transition from A to A∗ is given by the matrix D = T ∗T−1. Since D
preserves Σ, it must be monomial (D is in the group N of the twin BN -pair with respect
to Σ, see e.g. [Ab96]). We now show that D is in fact diagonal. Let ρ be the permutation
such that a∗i = λit

kiaρ(i) with λi ∈ k∗ and ki ∈ Z for all i = 1, 2, . . . , n. Then apparently
we have

c−(a1, . . . , an) = c+(a1, . . . , an)ϕ = c−(tk1aρ(1), . . . , t
knaρ(n))

and since W acts regularly on the apartment, it follows that ρ = id and k1 = · · · = kn. �
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Lemma 5.2 Any orthogonal A-basis for M with respect to β has a diagonal Gram matrix
with coefficients in kσ.

Proof Let A = {a1, . . . , an} be an A-basis for M that is orthogonal with respect to β and
let T = (tij = β(ai, aj)) be its Gram matrix. Clearly T is diagonal and tii ∈ Aσ for all i.

Recall that the A-basis of reference B for M is orthonormal with respect to β. Let
g ∈ GLn(A) take B to A. Then, T = (tij) = gtgσ. Since the determinant of g is a unit
λtk ∈ A∗ for some λ ∈ k and k ∈ Z, we find that det(T ) = λλσ ∈ kσ.

On the other hand, we know that T is diagonal with coefficients in Aσ, which means
that each tii is of the form

∑m
j=0 αjt

j + ασ
j t
−j. Therefore, vε(tii) ≤ 0. Moreover, since,

vε(det(T )) =
∑n

i=1 vε(tii) = 0 we find that vε(tii) = 0 for all i. It now follows that tii ∈ kσ

for all i. �

Corollary 5.3 Let ϕ be given by the σ-sesquilinear form β. Then ∆ϕ consists of precisely
those pairs of chambers cε(a1, . . . , an) such that {a1, . . . , an} is an A-basis for M that is
orthonormal with respect to β.

Proof Let c ∈ ∆ε and cϕ ∈ ∆−ε be opposite. By Lemma 5.1 there is an orthogonal basis
{a1, . . . , an} such that c = cε(a1, . . . , an). By Lemma 5.2 we know that β(ai, ai) ∈ kσ. By
our assumption on σ the norm Nσ: k → kσ is surjective. So replacing ai by λiai, where
λiλ

σ
i = t−1

ii we find an orthonormal basis inducing the same chambers. As we saw in
Corollary 4.5, if {a1, . . . , an} is an A-basis for M that is orthonormal with respect to β,
then the pair of opposite chambers cε(a1, . . . , an) are interchanged by ϕ. �

Corollary 5.4 Let ϕ be given by the σ-sesquilinear form β. Then a pair of opposite
objects ([Λ+], [Λ−]) of Γ belongs to Γϕ precisely if any A-basis {c1, . . . , cn} for M such that
Λε = 〈c1, . . . , cn〉Oε for ε = +,−, has a Gram matrix with coefficients in k.

Proof By definition, ([Λ+], [Λ−]) belongs to Γϕ if and only if there are chambers (c+, c−)
interchanged by ϕ with cε ∈ [Λε]. Therefore by Corollary 5.3 this happens precisely if
there is an A-basis A = {a1, . . . , an} for M that is orthonormal with respect to β such that
cε = cε(a1, . . . , an). In particular, Λε is spanned by an orthonormal basis, which we may
assume is {a1, . . . , an}, after multiplying some of the ai by a power of t.

Suppose that C = {c1, . . . , cn} is an A-basis for M such that for ε = +,−, Λε =
〈c1, . . . , cn〉Oε . Then the transition matrix T from A to C has coefficients in k = A∩O+∩O−.
Hence, the Gram matrix for C is T tσT , which has coefficients in k.

Conversely, suppose Λε = 〈c1, . . . , cn〉Oε for ε = +,−, such that C = {c1, . . . , cn} is an
A-basis for M that has a Gram matrix with coefficients in k. Then consider the k-vector
space spanned by this basis. Since the norm of Nσ: k → kσ is surjective we can apply
Gram-Schmidt to find an orthonormal basis A = {a1, . . . , an}. Thus the transition matrix
from C to A belongs to GLn(k) and therefore A is an Oε-basis for Λε for ε = +,−. By
Corollary 5.3 this means that ([Λ+], [Λ−]) ∈ Γϕ. �
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6 Residual geometries of Γϕ and the geometry N
In this section we shall describe the residues of Γϕ in terms of β.

Lemma 6.1 Let ∆ be a twin-building and let ϕ be a flip. Suppose ϕ interchanges the pair
(c+, c−) of opposite chambers. Let R+ be a spherical residue on c+ and let R− = Rϕ

+. Then,

(a) R = (R+, R−) together with the induced (co-) distances forms a spherical twin-
building,

(b) ϕ|R is a flip of R.

(c) Identifying R+ and R− via the isomorphism induced by projection, ϕ is a flip of the
spherical building R+.

Proof (a) Since R+ and R− are opposite, they have the same type and are therefore iso-
morphic (spherical) buildings. Moreover, the distance and codistance functions restricted
to R satisfy the axioms of a twinning. [Ro00] (b) The restriction ϕ|R:R+ → Rϕ

+ = R−
clearly preserves distances and codistances and interchanges the halves R+ and R− of the
twin-building R. Also, R contains a chamber that is interchanged with its opposite by ϕ.

(c) The map proj:R− → R+ given by x 7→ projR+
(x), where projR+

(x) is the unique
chamber at maximal codistance from x in R+ is an isomorphism ([Ro00, Prop 4.3]). More-
over, y ∈ R− is opposite x ∈ R+ in ∆ if and only if projR+

(y) is opposite x in R+. Thus
projR+

◦ϕ induces a flip of the spherical building R+. Note that a flip of a spherical building
sends types to opposite types, whereas a flip of a twin-building preserves types. �

Returning to the flip ϕ induced by a σ-hermitian form β, we describe the flip induced
on each residue.

Note 6.2 Note that the residue field Oε/(t
ε) is k.

Lemma 6.3 Let the flip ϕ of ∆ be induced by the σ-hermitian form β on V and let ϕ
interchange the pair R = (R+, R−) of opposite objects of ∆. If R+ = [Λ+] ∈ ∆+ and
R− = [Λ−], where Λ− = Λϕ

+, then

(a)
i+:R+ → An−1(Λ+/tΛ+)
Λ′ 7→ Λ′/tΛ+

and
i−:R− → An−1(tΛ−/Λ−)
Λ′′ 7→ Λ′′/Λ−

where tΛ+ ≤ Λ′ ≤ Λ+ and Λ− ≤ Λ′′ ≤ tΛ−, are isomorphisms. Note that these are
An−1-buildings over k.

(b) Let {c1, . . . , cn} be an A-basis for M so that Λε = 〈c1, . . . , cn〉Oε. Then, the projection
map projR− :R+ → R− is given by the k-linear map

projR− : R+ → R−∑n
i=1 γi(t)ci 7→

∑n
i=1 γi(t

−1)tci
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(c)
β : Λ+/tΛ+ × Λ+/tΛ+ → k

(u, v) 7→ β(u, t−1 projR−(v)) + (t)

is a reflexive σ-sesquilinear form, where σ = σ|k.

(d) The flip of the spherical building R+ induced by ϕ is given by the polarity induced by
β on Λ+/tΛ+.

Proof (a) Set W = Λ+/tΛ+. By the lattice-isomorphism theorem for the O+-module
chains tΛ+ ≤ Λ′ ≤ Λ+ the map i+ is injective and preserves containment/incidence. It
remains to show that under this correspondence the lattice Λ′ is free and of maximal rank
if and only if Λ′/tΛ+ is a k-linear subspace of W . Let U ≤ W be a linear subspace
and let c1, . . . , cn ∈ Λ be such that their images in W form a basis for W and c1, . . . , ci
forms a basis for U . By Nakayama’s lemma, the ci’s are an O+-basis for Λ+. Set Λ′ =
〈c1, . . . , ci, tci+1, . . . , tcn〉O+ so that i+(Λ′) = U .

(b) Let e1, . . . , en be an arbitrary A-basis for M such that Λε = 〈e1, . . . , en〉Oε . Consider
the apartment Σ{e1, . . . , en}. Then we see the projection of c+(e1, . . . , en) ∈ R+ as the
unique chamber of R− opposite to c−(e1, . . . , en) inside R− ∩ Σ−. This is the chamber
c−(en, . . . , e1).

Since both {c1, . . . , cn} and {e1, . . . , en} are A-bases for M contained in Λ+ ∩ Λ−, the
transition matrix A = (αij) with ej =

∑n
i=1 αijci has αij ∈ k. Let π be the map given by

π(
∑n

i=1 γi(t)ci) =
∑n

i=1 γi(t
−1)tci. Then π(ej) = π(

∑n
i=1 αijci) =

∑n
i=1 αijtci = tej. The

conclusion follows once we prove that π is well-defined.
Suppose

∑n
i=1 tγi(t)ci ∈ tΛ+. Then π(

∑n
i=1 tγi(t)ci) =

∑n
i=1 t

−1γi(t
−1)tci ∈ Λ−. This

shows that π is well-defined between the quotients Λ+/tΛ+ and tΛ−/Λ−.
(c) First note that since Λ− = Λϕ

+, we have β(u, v′) ∈ O+ for all u ∈ Λ+ and v′ ∈ Λ−.
Also, if either u ∈ tΛ+ or v′ ∈ t−1Λ−, then β(u, v′) ∈ (t). Since projR−(v) ∈ tΛ−,
β(u, t−1 projR−(v)) ∈ O+ for any u, v ∈ Λ+. Since projR− is k-linear and sends tΛ+ to Λ−,

β is well-defined. Clearly, β is σ-sesquilinear.
(d)
Let Λ′ be such that tΛ+ ≤ Λ′ ≤ Λ+. Now

v ∈ Λ′ϕ ⇐⇒ β(u, v) ∈ O+ ∀u ∈ Λ′

⇐⇒ β(u, proj(proj(v))) ∈ O+ ∀u ∈ Λ′

⇐⇒ β(u, t−1 proj(proj(v))) ∈ tO+ ∀u ∈ Λ′

⇐⇒ β(u, proj(v)) = 0 ∀u ∈ Λ′

⇐⇒ β(u, proj(v)) = 0 ∀u ∈ Λ′/tΛ+

⇐⇒ proj(v) ∈ (Λ′/tΛ+)⊥.

Hence, projR+
(Λ′ϕ) = (Λ′/tΛ+)⊥, where ⊥ is taken with respect to β. �

Corollary 6.4 Let ϕ be the flip induced on the residue of an object Λ+ ∈ Γϕ. Then the
residue of Λ+ in Γϕ is the flip-flop geometry of ϕ induced on Λ+/tΛ+.
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The pre-geometry in Corollary 6.4 is isomorphic to the pre-geometry Nn of k-subspaces
of an n-dimensional k-vector space V that are non-degenerate with respect to the non-
degenerate σ-hermitian form β, where incidence is given by inclusion.

The next result follows from Bennett and Shpectorov [BeSh04] and Lemma 8.3.

Lemma 6.5 Let Rϕ be an object of the pre-geometry Γϕ. First assume that k = Fq2 for
some prime power q. Then, Rϕ is

(a) connected if (n, q) 6= (3, 2), and

(b) residually connected if q 6= 2.

Moreover, if |k| ≥ 4 (in particular if it is infinite), then Rϕ is connected and simply
connected.

7 (Simple) connectedness of Γϕ

In this section we prove that the geometry Γϕ and all of its residues of rank at least 3 are
usually (simply) connected.

Example 7.1 For n = 2, the geometry Γϕ is not always connected. Note that Γ is a
tree, so that Γϕ is a forrest. We show that there exists an apartment Σ+ of ∆+ and three
objects [Λ0], [Λ1], and [Λ2] on Σ+ such that [Λ0], [Λ2] ∈ Γϕ are both incident to [Λ1] 6∈ Γϕ.

Let V be a vector space of dimension 2 over k(t) and let β be the σ-hermitian form
inducing the flip ϕ. We assume that σ satisfies (S) and (H) and in addition we require
that

√
2 ∈ kσ (this is for instance the case if k = F81). Let {e, f} be a hyperbolic pair with

respect to β. Then, { e−f√
2
, e+f√

2
} is an orthonormal basis for β, so we can set M = 〈 e−f√

2
, e+f√

2
〉A.

The transition matrix between these bases is

H0 =

(
1√
2

1√
2

− 1√
2

1√
2

)
∈ SL2(kσ).

We consider the apartment Σ+ = Σ+{−e + tf, f} and let Λi = 〈−e + tf, tif〉O+ ,

for i = 0, 1, 2. Then if Λ0 = 〈e, f〉O+ , it follows that [Λ0] ∈ Γϕ since { e−f√
2
, e+f√

2
} is an

orthonormal O+-basis for Λ0.
In the residue Λ0/tΛ0, we see that Λ1 is represented by the singular 1-space 〈e〉 + tΛ0

and so by Corollary 6.4, [Λ1] 6∈ Γϕ. Finally, we claim that Λ2 = 〈te, (t2− 1)e+ tf〉O+ . This
is so because the transition matrix from {−e+ tf, t2f} to {te, (t2 − 1)e+ tf} is

H2 =

(
−t 1− t2

1 t

)
∈ GL2(k[t]).

Hence, we can also represent the object [Λ2] as 〈e, (t−t−1)e+f〉O+ . This basis is hyperbolic
with respect to β. The transition matrix from {e, f} to {e, (t− t−1)e+ f} is

U =

(
1 t− t−1

0 1

)
∈ SL2(A).
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That is, Λ2 is spanned by an A-basis for M that has a Gram matrix with entries in k. It
follows that [Λ2] ∈ Γϕ. Thus Γϕ is disconnected.

7.1 A criterion for simple connectedness of Γϕ

In order to prove that Γϕ is connected and simply connected, we shall use the follow-
ing criterion for simple connectedness of Phan chamber systems given by Devillers and
Mühlherr [DeMu07].

Given a residue R, we define

l∗(ϕ,R) = min{l(δ∗(c, cϕ)) | c ∈ R}
Aϕ(R) = {c ∈ R ⊆ ∆+ | δ∗(c, cϕ) = l∗(ϕ,R)}

Let ϕ be a geometric flip of the twin-building ∆ = (∆+,∆−, δ∗) over the set I. Suppose
that the following conditions are met:

(DMi) If J ( I has cardinality at most 3, then each J-residue is spherical.

(DMii) If J ( I has cardinality 2, and R is a J-residue of ∆+, then the chamber system
(Aϕ(R), (∼j)j∈J) is connected.

(DMiii) If J ( I has cardinality 3, and R is a J-residue of ∆+, then the chamber system
(Aϕ(R), (∼j)j∈J) is simply 2-connected.

Then, the chamber system ∆ϕ is simply 2-connected.

7.2 The geometry Aϕ(R)

We shall now consider the geometry Aϕ(R). In order to eliminate the cases where the
diagram of R is disconnected we have the following observation.

Lemma 7.2 Let R be a residue that is isomorphic to a direct product of residues R1×R2.
Then Aϕ(R) ∼= Aϕ(R1)× Aϕ(R2).

Proof We have proj ◦ϕ|R = proj ◦ϕ|R1 × proj ◦ϕ|R2 . Therefore a chamber c = (c1, c2)
belongs to Aϕ(R) if and only if ci ∈ Aϕ(Ri) if and only if ci opp proj ◦ϕ(ci). �

In order to identify the geometries Aϕ(R), where R is a residue of rank 2 or 3 with a
connected diagram, we present the following two results.

Lemma 7.3 For ε = ±, let Sε ( Rε be residues of ∆ε such that Sε = projRε
(R−ε) and let

xε ∈ Rε be an arbitrary chamber. Then,

(a) C(x+, x−) contains zε = projRε
(x−ε), and

(b) C(x+, x−) contains yε = projSε
(xε). Moreover,

(c) projSε
(y−ε) = projRε

(y−ε) = projRε
(x−ε) = projSε

(x−ε) = zε.
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Proof (a) Since C(x+, x−) is coconvex and contains x−ε and some chamber (namely xε)
of Rε, it contains zε = projRε

(x−ε) as well (cf. Lemma 2.8).
(b) Since C(x+, x−) ∩ Rε is convex by Lemma 2.8, and contains xε and some chamber

(namely zε) of Sε, it also contains yε = projSε
(xε).

(c) We show that projRε
(x−ε) = projSε

(x−ε). By Lemma 2.8, zε = projRε
(x−ε) =

Rε ∩
⋂

uε∈Rε
C(uε, x−ε). Hence, in particular zε ∈ Rε ∩

⋂
uε∈Sε

C(uε, x−ε). Since we know
that the latter is a singleton, we are done. Now since x−ε is arbitrary, taking x−ε = y−ε,
we also find projRε

(y−ε) = projSε
(y−ε).

From (b) with xε = uε ∈ Rε we find that y−ε ∈ C(uε, x−ε). Hence, C(uε, y−ε) ⊆
C(uε, x−ε) for all uε ∈ Rε. It follows that

⋂
uε∈Rε

C(uε, y−ε) ⊆
⋂

uε∈Rε
C(uε, x−ε). In-

tersecting this with Rε we find that both sets are singletons equal to projRε
(y−ε) and

projRε
(x−ε) respectively. �

We now examine the special situation where R−ε = Rϕ
ε .

Corollary 7.4 Let the situation be as in Lemma 7.3 and assume in addition that R−ε = Rϕ
ε

and x−ε = xϕ
ε , for ε = ±. Then,

(a) y−ε = yϕ
ε and z−ε = zϕ

ε .

(b) xε ∈ Aϕ(Rε) if and only if

(i) xε belongs to a residue opposite to Sε in Rε whose type is also opposite to the
type of Sε in Rε and

(ii) yε ∈ Aϕ(Sε).

(c) projSε
, projS−ε

and ϕ all define bijections between S−ε and Sε.

Proof (a) This is because ϕ preserves distances and codistances.
(b) Note that xε ∈ Aϕ(Rε) if and only if xε is opposite to zε = projRε

(xϕ
ε ). This happens

precisely if we have (i) and in addition, yε = projSε
(xε) is opposite to zε. Note however,

that by Lemma 7.3 and (a), we have zε = projSε
(yϕ

ε ). Thus, yε is opposite to zε precisely
if yε ∈ Aϕ(Sε).

(c) It follows from Lemma 7.3 (c) that projRε
(R−ε) = projRε

(S−ε) = projSε
(S−ε), so

projSε
:S−ε → Sε is surjective. Moreover, projSε

and projS−ε
are each other’s inverse. As

for ϕ, since ϕ defines a bijection between Rε and R−ε, it also sends Sε to S−ε. �

Note 7.5 We would like to thank the referee who pointed us to the present simplified
version of part (c).

Lemma 7.6 For ε = ±, let Rε be a spherical residue of ∆ε such that R−ε = Rϕ
ε and let

xε ∈ Rε. Assume in addition that projRε
:R−ε → Rε is bijective for ε = ±. Define the

relation oppR ⊆ R+ ×R− ∪R− ×R+ by xε oppR x−ε if and only if xε and projRε
(x−ε) are

opposite in Rε. Then,
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(a) oppR defines a twinning on R = (R+, R−),

(b) ϕ restricts to a geometric flip on R.

Proof In order to show that oppR defines a twinning on R, we show that it defines a
1-twinning as in [AbVa01]. Consider two chambers cε ∈ Rε with c− oppR c+ and let
πε ⊆ Rε be a panel of some given type i on cε. Let xε ∈ πε. We must show that there
exists a unique y−ε ∈ π−ε such that xε is not opposite to Ry−ε. Let π′ = projR−ε

(πε)
and x′ = projR−ε

(xε) ∈ π′. Since projR−ε
:Rε → R−ε is bijective, π′ is again a panel.

Since cε oppR c−ε, the panels π′ and π−ε are opposite in R−ε. Therefore the chamber
y−ε = projπ−ε

(x′) is the unique chamber not opposite to x′ in π−ε so that y−ε is also the
unique chamber not opposite to xε in π−ε. This shows that oppR is a 1-twinning.

In order to use the main result from loc. cit. we show that oppR also satisfies condition
(TA) of that result. This means that we must find some xε ∈ Rε and an apartment ΣRε

of Rε such that {xε} = {yε ∈ Rε | yε ∈ ΣRε and c−ε oppR yε}. To do this, simply take
a twin-apartment Σ = (Σ+,Σ−) of ∆ and let ΣRε = Σε ∩ Rε. Then, there is a unique
chamber xε in Σε such that xε oppRε

projRε
(c−ε). This is the desired chamber.

(b) Clearly ϕ is an involutory isometry of R preserving distances and the twinning oppR.
Moreover, ϕ is geometric on R if for each panel π ⊆ Rε ⊆ ∆ε the map projπ ◦ϕ: π → π is
not the identity. Since the projection map of R is the restriction of the projection map of
∆, geometricity immediately carries over from ∆ to R. �

Corollary 7.7 Let the situation be as in Lemma 7.6, where we now specify to ∆ and
ϕ as in Section 4. If R+

∼= R1 × · · · × Rr, where Ri has type Ami
, then Aϕ(R+) ∼=

Aϕ(R1)× · · · × Aϕ(Rr), where Aϕ(Ri) ∼= Nmi+1.

Proof The fact that the phan geometry of a product is the product of the Phan geometries
follow from Lemma 7.2. Therefore assume R+ is of type Am. By Lemma 7.6 ϕ is a flip on
the spherical building R = (R+, R−). Identifying R− with R+ via projR+

, the flip acts as
projR+

◦ϕ on R+. Since projR+
is bijective, this flip is non-degenerate on R+. Note that

flip defines a non-degenerate polarity on the Am building R+. Hence there exist panels
π+ for which projπ+

◦ϕ: π+ → π+ is bijective. Now in Section 4 we showed that projπ+
is

linear and ϕ is σ-semi-linear with respect to some projective identification. This implies
that projR+

◦ϕ must be a unitary flip on R+. The Phan geometry Rϕ is now isomorphic
to Nm+1. �

Geometric description of Aϕ(R) In order to use the criteria (DMi), (DMii), and
(DMiii), we shall now explicitly describe Aϕ(R) when R has rank 2 or 3. Note that
Aϕ(R) is completely characterized by Corollary 7.4 part (c) and Corollary 7.7. We shall
now describe R in case R has rank 1, 2 or 3. By Corollary 7.7, we may assume that R
has type Am with m = 2, 3 over index set I = {1, . . . ,m}. We then distinguish cases by
considering the type of S as defined in Corollary 7.4.
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Extremal cases and rank 1 We first distinguish two extremal cases: S = R and S is a
chamber. Clearly this covers the case when R has rank 1. If S = R, then by Corollary 7.7
the geometry Aϕ(R) is isomorphic to Nrank(R)+1. If S is a chamber, then Aϕ(R) is the
collection of chambers of R opposite to S in R by Corollary 7.4.

Rank 2 and the geometry AN By duality we may assume typ(S) = {2}. By Corol-
lary 7.7, Aϕ(S) is isomorphic to the non-degenerate points on a line endowed with a
non-degenerate unitary form; in fact it is the dual of that geometry i.e. it is a special
collection of lines lying on a given point p. We can model this as follows. Let V be a
vector space of dimension 3 containing the 1-space p. Also, let m be a 2-space disjoint
from p and let H be a hyper surface of mσ (e.g. the set of vectors that are singular with
respect to a non-degenerate unitary form). For t ∈ H let lt = 〈p, t〉V . Let AN be the
geometry whose points are the 1-spaces in V −

⋃
t∈H lt and whose lines are the 2-spaces

not containing p. Note that the chambers of AN are those point-line pairs (q, l), where l
is opposite to (i.e. not lying on) p and where the projection 〈q, p〉 of q onto p is different
from any of the lt. Using Corollary 7.4 one verifies that in case H is given by a unitary
form that is non-degenerate on m, AN = Aϕ(R).

Rank 3 When R has rank 3, by duality typ(S) ∈ {{1, 3}, {1}, {2}, {1, 2}}. We now
describe the resulting geometries Aϕ(R) in each case.

Case typ(S) = {1, 3} and the geometry Γm Let m be a line of the building geometry
of type A3(k), i.e., the geometry on the non-trivial subspaces of some four-dimensional
k-vector space V . Let β be a non-degenerate σ-hermitian form on V such that m is non-
degenerate with respect to β. As in the Case rank 2 above, let H be the set of singular
points of V with respect to β. Let Hm = H ∩m and let Hm⊥ = H ∩m⊥. For x ∈ Hm⊥ ,
let πx be the plane 〈m,x〉.

Let Γm be the pre-geometry of elements opposite this set, i.e., the points of Γm are
those points that are not incident with any of the πx, the lines of Γm are those lines that
do not intersect m, and the planes of Γm are those planes that are not incident with any
of the p ∈ Hm. The elements of this geometry are called good.

The geometry Γm models Aϕ(R) in case typ(S) = {1, 3}: The residue S itself is the
line m. Using Corollary 7.7 we have Aϕ(S) ∼= N2 ×N2. The chambers of Aϕ(S) are those
triples (p,m, π), where p is non-degenerate with respect to β|m, that is not on Hm, and π
corresponds to the point π ∩m⊥, which must be non-degenerate with respect to β|m⊥ . By
Corollary 7.4 the chambers of Aϕ(R) are those triples x = (p, l, π), where l is opposite to
(i.e. disjoint from) m, and projS(x) = (π ∩m,m, 〈m, p〉) belongs to Aϕ(S). Clearly this is
exactly the geometry Γm.

Cases typ(S) = {1} This geometry can be constructed in the same way as the geometry
Γm in Case typ(S) = {1, 3}. By making β have a 1-dimensional radical on either m or m⊥

we obtain the geometry Aϕ(R) in case typ(S) is {3} and {1} respectively.
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Case typ(S) = {2} and the geometry Γp,π Let p be a point incident with a plane π
of the building geometry of type A3(k), i.e., the geometry on the non-trivial subspaces of
some four-dimensional k-vector space V . Let β be a non-degenerate σ-hermitian form on
V such that p and π are non-degenerate with respect to β. Let m = p⊥ ∩ π, and, for each
1-space x on Hm, let lx = 〈p, x〉.

Let Γp,π be the pre-geometry of elements opposite this set, i.e., the points of Γp,π are
those points that are not incident with π, the lines of Γp,π are those lines that do not
intersect any of the lx, and the planes of Γp,π are those planes that are not incident with
p. The elements of Γp,π are called good.

The geometry Γp,π models Aϕ in case typ(S) = {2}. The residue S is the flag (p, π).
Using Corollary 7.7 we have Aϕ(S) ∼= N2. The chambers of Aϕ(S) are those triples
(p,m, π), wherem = 〈p, x〉 and x is non-degenerate with respect to β|p⊥∩π. By Corollary 7.4
the chambers of Aϕ(R) are those triples x = (q,m, π′), where q and π′ are opposite to (i.e.
not lying on) π and p respectively, and where projS(x) = (p, 〈p,m∩π〉, π) belongs to Aϕ(S).
This is exactly the geometry Γ(p,π).

Case typ(S) = {1, 2} and the geometry Γπ Let π be a plane of the building geometry
of type A3(k), i.e., the geometry on the non-trivial subspaces of some four-dimensional
k-vector space V . Let β be a non-degenerate σ-hermitian form on V such that π is non-
degenerate. Let Hπ = H ∩ π, and for each t ∈ Hπ, let lt = t⊥ ∩ π. We study the
pre-geometry Γπ opposite of this residue, i.e., the points of Γπ are those points that are
not contained in π, the lines of Γπ are those lines that intersect π in a point not in Sπ, and
the planes of Γπ are those planes that do not contain any lt. The elements of Γπ are called
good.

The geometry Γπ models Aϕ in case typ(S) = {1, 2}. The residue S is the plane π.
Using Corollary 7.7 we have Aϕ(S) ∼= N3. The chambers of Aϕ(S) are those triples (p, l, π),
where p and l are non-degenerate with respect to β|π. By Corollary 7.4 the chambers of
Aϕ(R) are those triples x = (q,m, π′), where q is opposite to (i.e. not lying on) π, and
where projS(x) = (m ∩ π, π′ ∩ π, π) belongs to Aϕ(S). This is exactly the geometry Γπ.

Theorem 7.8 The geometry Γϕ is simply connected, if n ≥ 4 and |kσ| ≥ 4.

Proof Since by Lemma 4.11 the flip ϕ is geometric, we need to verify criteria (DMi),
(DMii) and (DMiii).

(DMi) Since ∆ has diagram Ãn−1, condition (DMi) is satisfied.
(DMii) and (DMiii): By a result of Gramlich et al. [GHMS] conditions (DMii) and

(DMiii) are satisfied when the diagram is Ãn−1 for n ≥ 4, when k = Fq2 and q ≥ 4. In
Corollaries 8.6 and 8.10 we also prove these results for infinite fields. �

8 (Simple) connectedness of Aϕ(R)

In this section we prove Lemma 8.3, which is analogous to a result from Bennett and
Shpectorov [BeSh04], but now for infinite fields, needed in Lemma 10.2.
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We also prove Corollaries 8.6 and 8.10, which are analogous to results from Gramlich
et al. [GHMS], but now for infinite fields, needed in Theorem 7.8.

More precisely, we show that the small rank geometries Aϕ(R) will satisfy the conditions
(DMii) and (DMiii) needed in the proof of Theorem 7.8 in the case of an infinite field. These
geometries were described explicitly in Section 7. We shall use those descriptions to show
(simple) connectedness.

We learned that generalized versions of these geometries are considered in [DeGrMu]
as well. There they are called generalized Phan geometries. In fact the end results in
this section are implied by some of the results there but, as the methods are different and
independent from those in [DeGrMu], we decided to keep the results included here in order
for the paper to be as self-contained as possible.

8.1 Criteria for simple connectedness over infinite fields

In the following results the geometry Γ will have a string diagram. In that context, points
will refer to one fixed end node and lines and planes will then refer to the following two
nodes.

Lemma 8.1 Let Γ be a residually connected geometry with a string diagram, in which the
following holds:

(NI) Given a set Y of three lines, there exists a line l not intersecting any of the lines in
Y .

(PL) Given a set X of at most three points and a set Y of at most three lines, and a line
l not intersecting any of the lines in Y , there exists a point p on l such that p is
collinear to each point in X and forms a plane with each line in Y .

Then, Γ is connected and simply connected.

Proof We first show that Γ is connected. Since Γ is transversal, it suffices to show that,
given two points x1 and x2, there is a point p that is collinear to both. This follows from
(PL).

Since Γ has a string diagram and is residually connected, any cycle is homotopic to a
cycle of points and lines. Therefore it suffices that any such cycle is 0-homotopic. Because
the diameter of the collinearity graph of Γ is 2, any cycle is homotopic to a cycle of length at
most 5. We first show that any cycle of length 3 is 0-homotopic. Let x1, y1, x2, y2, x3, y3, x1

be a 3-cycle, where xi is a point and yi is a line for each i = 1, 2, 3. Then by (NI) there exists
a line l not intersecting the lines y1, y2, and y3. By (PL) there is a point p on l that forms a
plane πi with yi, for i = 1, 2, 3. Hence, the subcomplex induced on {xi, yi, πi, p | i = 1, 2, 3}
forms a cone, which is 0-homotopic.

Next, suppose that x1, y1, . . . , x4, y4, x1 is a 4-cycle. Then, by (PL), there is a point on
the line y4 that is collinear to x2 and x3. This decomposes the 4-cycle into three 3-cycles.

Next, suppose that x1, y1, . . . , x5, y5, x1 is a 5-cycle. Then, by (PL), there is a point on
the line y5 that is collinear to x2 and x4. This decomposes the 5-cycle into two 3-cycles
and a 4-cycle. �
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Now let V be an k-vector space of dimension n ≥ 2 with a non-degenerate σ-hermitian
form β. Here σ is a non-trivial automorphism of order 2 of the infinite field k.

We shall reprove the required results from [GHMS] by replacing some of the counting
arguments used there with algebraic geometric arguments. In order to do this, we will use
some considerations over the fixed field kσ. If U ≤ V is an m-dimensional k-subspace of V ,
then we denote by Uσ the vector space U , viewed as a 2m-dimensional vector space over
kσ.

Let H be the set of singular points of V with respect to β.

Lemma 8.2 (a) The set H consists of the 1-spaces of V corresponding to 2-spaces of
the affine space Vσ lying on the algebraic hyper surface given by β.

(b) Let l be a 2-space of V such that β is non-trivial on l. View lσ as an affine space
over kσ. The β-non-degenerate 1-spaces on l are those 2-dimensional kσ-spaces of lσ
lying outside the algebraic hyper-surface Hl = H ∩ l over kσ.

Proof (a) We note that, by definition of σ, the extension k/kσ is Galois of degree 2.
Therefore k = kσ(α), where the minimal polynomial mα is quadratic. If a = x + yα ∈ k,
then Nσ(a) = aaσ = x2 + tr(α)xy + Nσ(α)y2 = P (x, y). As a consequence, given an
orthonormal k-basis {ei}n

i=1 for V , then for v =
∑n

i=1(xi + yiα)ei, we have β(v, v) =∑n
i=1 P (xi, yi). Therefore H is the zero-set of a polynomial with coefficients in kσ.
(b) This is immediate from (a). �

8.2 The geometries N and AN and condition (DMii)

Let N = Nn be the pre-geometry of subspaces of V that are non-degenerate with respect
to β, where incidence is given by inclusion.

The following lemma was proved by Bennett and Shpectorov in [BeSh04] in the case
that k = Fq2 .

Lemma 8.3 If k is infinite and n ≥ 4, then Nn is a connected, residually connected, and
simply connected geometry.

Proof We first show N is transversal. Let F be a flag of N that is not maximal and
suppose that (A,C) ⊆ F is a subflag with dim(C) − dim(A) 6= 1. Since there exists a
non-degenerate 1-space in A⊥ ∩ C, we can extend F so as to include an object of type
dim(A) + 1. The same argument can be applied to flags F of rank 1, by setting A = 0 or
C = V .

We show that N satisfies the criteria (NI) and (PL) as in Lemma 8.1.
Let yi be a line for i = 1, 2, 3. Pick a point p not on any of these lines. Then the planes

〈p, yi〉 are represented as three lines in p⊥ (which does not contain p itself). Note that this
requires that n ≥ 4. Since p⊥ is non-degenerate, it contains at least one non-degenerate
point q not on any of the lines. Then 〈p, q〉 is the required line l. Thus N satisfies (NI).
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Let l be a line and X be the set of points and Y the set of lines as in property (PL).
For x ∈ X, let mx = x⊥ ∩ 〈x, l〉 and define the isomorphism of kσ-varieties ϕx: l → mx

by t 7→ 〈x, t〉 ∩ mx. Then the 1-space t does not form a line of N with x if and only if
ϕx(t) ∈ Smx .

For y ∈ Y , let my = y⊥ ∩ 〈l, y〉 and define the isomorphism of kσ-varieties ψy: l → my

by t 7→ 〈y, t〉 ∩my. Then the 1-space t does not form a plane of N with y if and only if
ψy(t) ∈ Smy .

It follows that all the points on l that fail one of the conditions in (PL) lie on the union
Sl ∪ ∪

⋃
x∈X ϕ

−1
x (Smx) ∪

⋃
y∈Y ψ

−1
y (Smy). By Lemma 8.2 this is a union of hypersurfaces.

Since the field kσ is infinite, the affine plane lσ cannot be covered by finitely many hyper
surfaces. Therefore N satisfies (NI) and (PL) from Lemma 8.1.

Next, we prove that any residue R of type J ⊆ I = {1, 2 . . . , n − 1}, where |J | ≥ 2,
is connected. If J is disconnected, then R is the direct product of two geometries, and is
therefore connected. If J is connected, then R is isomorphic to the geometry N in rank
|J |. Since N has a string diagram and is transversal, it suffices to show that any two points
are connected by a path of points and lines only. Let x1 and x2 be two points of R and
let l be a line through x1. Let m2 = x⊥2 ∩ 〈x2, l〉. Define the isomorphism of kσ-varieties
φ2: l → m2 by t 7→ 〈t, x2〉 ∩m2. Then the 1-space t does not form a line of N with x2 if
and only if φ2(t) ∈ Sm2 .

Now a 1-space p on l is a point that is collinear to x2 unless it lies on the union of the
two hyper surfaces Sl and φ−1

2 (m2) of lσ. Here we again make use of Lemma 8.2. Since the
field kσ is infinite, the affine plane lσ cannot be covered by finitely many hyper surfaces.
Therefore, some point p is collinear to both x1 and x2. It follows that R is connected.

We have proved thatN is transversal, has a string diagram, and is residually connected.
Since it also satisfies (IN) and (PL) from Lemma 8.1 N is connected and simply connected.
�

Lemma 8.4 AN is transversal and connected.

Proof Note that two points x1 and x2 both different from p are collinear if and only if
〈p, x1〉 and 〈p, x2〉 intersect m in different points. If this is not the case, then any third
point x3 such that 〈x3, p〉 intersects m elsewhere is collinear to both. Since m−H contains
more than one 1-space, such a third point x3 always exists. Therefore AN is connected.

Next we show that AN is transversal. Any point is contained in some 2-space not
passing through p, so any point lies on some line. Since k is infinite, by Lemma 8.2 the
2-space m contains a point q. If y is a line, then y does not contain p and so the point
〈p, q〉 ∩ y is a point on y. �

Lemma 8.5 N3 is transversal and connected.

Proof Let x1 and x2 be two points. Let mi = x⊥i for i = 1, 2. If x1 ∈ m2, then x1 is
collinear to x2 and we’re done. Suppose this is not the case. Let ϕ:m1 → m2 be the the
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isomorphism of algebraic kσ-varieties given by t 7→ 〈x2, t〉 ∩m2. Then t is collinear to both
x1 and x2 provided it does not belong to the union of hyper surfaces Sm1 ∪ϕ−1(Sm2). Since
k is infinite, m1 is not covered by this union and so such a point t exists.

We now show that N3 is transversal. By the preceding, every points lies on some line.
Each line y is x⊥ for some point x. By the preceding, y has a point. �

Corollary 8.6 The chamber system ∆ϕ satisfies condition (DMii) in the proof of Theo-
rem 7.8 if k is infinite.

Proof Let R be a rank-2 residue. Consider Aϕ(R). First note that if R is of type A1×A1,
then by Lemma 7.2 we have Aϕ(R) = Aϕ(π1)×Aϕ(π2). Since ϕ is geometric, both factors
are non-emtpy so that Aϕ(R) is connected.

Next assume that R is of type A2. There are three cases for projR(Rϕ): it is either a
chamber c, a panel π, or all of R. In the first case, Aϕ(R) consists of all chambers of R
opposite c. By [Ab96, Br93], this is connected. In the second case, Aϕ(R) is isomorphic
to AN or its dual. In the third case, Aϕ(R) is isomorphic to N3 or its dual. Therefore
connectedness follows from Lemma 8.4 and 8.5.

We note here that condition (DMii) refers to connectedness of chamber systems, whereas
we have proved connectedness for the geometry. Since the residue R we consider has rank
2, these notions are equivalent. �

8.3 (Simple) connectedness of Aϕ(R) in rank 3 and condition (DMiii)

We show that the geometries Aϕ(R) described in Section 7 satisfy condition (DMiii). We
note again that the condition (DMiii) refers to simple connectedness of chamber systems,
whereas we shall work with geometries. Since the residues R we consider are of rank 3 or
less, these notions are equivalent.

We first consider the case where R is of type A3(k) for some infinite field k.

Lemma 8.7 The pre-geometry Γm is a simply connected geometry.

Proof We need to show that Γm is transversal, residually connected and satisfies (NI) and
(PL). To show (NI) we proceed as the proof of Lemma 8.3 adding the line m to the set
{y1, y2, y3}.

To prove (PL) we first fix a line l and the sets X and Y as in the definition. Define
the map φm⊥ : l→ m⊥ by t 7→ 〈m, t〉 ∩m⊥. Now t is a point of the geometry if and only if
t 6∈ φ−1

m⊥(Sm⊥).
If x ∈ X then the only 1-dimensional subspace of l not collinear with x is px = 〈m,x〉∩l.

Moreover if y ∈ Y then the map ϕy: t 7→ 〈t, y〉∩m gives an isomorphism between the points
of l that do not form a good plane with y and the points on the hyper surface Sm. Note that
this means that ϕ−1

y (Sm) is a hyper surface of lσ. It follows that all the points on l that fail

one of the conditions in (PL) lie on the union φ−1
m⊥(Sm⊥) ∪

⋃
y∈Y ϕ

−1
y (Sm) ∪ {px | x ∈ X}.

As before this union of subvarieties does not cover lσ so there is a point t on l that is
collinear to all of X and coplanar to all of Y .
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We now show that Γm is transversal and residually connected. Note that above we
proved that each line contains a point. Moreover, both the residues of a point and of a
plane are isomorphic to AN . Therefore by Lemma 8.4 we are done. �

Lemma 8.8 The pre-geometry Γp,π is a simply connected geometry.

Proof We first show that Γp,π satisfies properties (NI) and (PL). Let yi, with i = 1, 2, 3
be lines of Γp,π. Let x be a 1-space in m− Sm −

⋃3
i=1 yi so that any 2-space on x not in π

is a line. Repeating the argument in the proof of Lemma 8.3 we find the required line l.
We now prove that Γp,π has property (PL). Let X, Y and l be as in (PL). For each

x ∈ X, define the isomorphism ϕx: l → m by setting z 7→ 〈x, z, p〉 ∩m. Then, z does not
form a good line with x if and only if ϕx(z) ∈ Sm.

For y ∈ Y , the only point on l that does not form a good plane with y is the point
py = l ∩ 〈p, y〉.

It follows that all the points on l that fail one of the conditions in (PL) lie on the union
Sl ∪ {py, y ∈ Y } ∪

⋃
x∈X ϕ

−1
x (Sm). As before this union of subvarieties does not cover lσ.

We now show that Γp,π is transversal and residually connected. Clearly the residue of
a line is connected since its diagram is disconnected. Moreover, the residue of a point and
the dual of the residue of a plane are isomorphic to AN . Therefore by Lemma 8.4 we are
done. �

Lemma 8.9 The pre-geometry Γπ is a simply connected geometry.

Proof We first show that Γπ satisfies properties (NI) and (PL). Let yi, with i = 1, 2, 3 be
lines of Γπ. Let x be a 1-space on π − Sπ −

⋃3
i=1 yi so that any 2-space on x not in π is a

good line. Repeating the argument in the proof of Lemma 8.3 we find the required line l.
We now prove that Γπ has property (PL). Let X, Y and l be as in (PL).
Let x ∈ X. Define the isomorphism ϕx: l→ mx, where mx = 〈x, l〉∩π, by t 7→ 〈x, t〉∩π

. Then 〈x, t〉 is not a good line if and only if ϕx(t) ∈ Smx .
Let y ∈ Y and let my = (y ∩ π)⊥ ∩ π. Define ψy: l → my to be the isomorphism given

by t 7→ 〈t, y〉 ∩my. Then, the 1-space t does not form a good plane with y if and only if
t ∈ ψ−1(Smy). It follows that all the points on l that fail one of the conditions in (PL) lie
on the union Sl ∪ ∪

⋃
x∈X ϕ

−1
x (Smx) ∪

⋃
y∈Y ψ

−1
y (Smy). As before this union of subvarieties

does not cover lσ.
We now show that Γπ is transversal and residually connected. Clearly the residue of

a line is connected since its diagram is disconnected. Moreover, the residue of a point is
isomorphic to N3 and the dual of the residue of a plane is isomorphic to AN . Therefore
by Lemmas 8.4 and 8.5 we are done. �

Corollary 8.10 The chamber system ∆ϕ satisfies condition (DMiii) in the proof of The-
orem 7.8 if k is infinite.
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Proof Let R be a J-residue for some J ⊆ I with |J | = 3. If the diagram underlying J is
disconnected, then Aϕ(R) is a direct product by Lemma 7.2. Moreover, each rank-2 com-
ponent is connected by Corollary 8.6. Simple 2-connectedness then follows from [BeSh04,
Lemma 3.8].

Therefore we may assume that R is of type A3 and J = {1, 2, 3}. Let X = projR ◦ϕ(R)
have type K. Then X is a residue in R, which can be of rank 0, 1, 2, or 3. If X is a
chamber, then Aϕ(R) is the collection of chambers in R opposite to X.

The result follows from Lemma 8.7 if X has type K = {1, 3}, {1}, {3}; in case K = ∅
(i.e. X is a chamber) this is a trivial calculation, and follows from [Ab96]; if follows from
Lemma 8.8 if K = {2}; and it follows from Lemma 8.9 if K = {1, 2} or K = {2, 3}. Finally
in case K = J , the result follows from Lemma 8.3. �

9 The group Gϕ

Although the full group of type preserving automorphisms of ∆ is larger, we shall only
consider the following subgroup. Here we identify GL(M) with GLn(A) via the action on
the basis of reference B.

GL0
n(A) = {g ∈ GLn(A) | vε(det(g)) = 0}.

This group acts strongly transitively on ∆ ([Ro89, Ab96, Br89, Ga97]).

Definition 9.1 Given a non-degenerate σ-hermitian form β with an A-basis for M that
is orthonormal for β, where σ satisfies (S) and (H). An automorphism f ∈ GL0

n(A) is called
an isometry if

β(f(u), f(v)) = β(u, v) ∀u, v ∈ V.
The group of all such isometries is denoted GUn(A).

From now on we shall work with the following subgroup

SUn(k[t, t−1], β) = SUn(A) = GUn(A) ∩ SLn(A)

Lemma 9.2 The group SUn(k[t, t−1], β) acts flag-transitively on Γϕ.

Proof Since Γϕ is transversal and SUn(k[t, t−1], β) preserves types, it suffices to show that
SUn(k[t, t−1], β) is transitive on chambers. By Proposition 5.1 chambers of Γϕ are given
by β-orthogonal A-bases for M. Let c be a chamber given by the orthonormal basis A.
Then, there exists and element g ∈ GUn(A) that takes the basis of reference B to A. By
applying, if necessary, a scalar multiplication by det(g) ∈ k to one of the basis elements
of A, we can ensure that g is transformed into an element of SUn(k[t, t−1], β) (Note that
since det(g) ∈ A∗ and ε(det(g)) = 0, in fact det(g) ∈ k∗). Therefore A and the modified
basis determine the same chamber c. �

10 The amalgam

In this section we shall prove that G = SUn(k[t, t−1], β) is the universal completion of an
amalgam A(2) (Defined in 10.1) of finite subgroups of small rank.
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10.1 The amalgam M of maximal parabolics

Let c be the chamber associated to the ordered basis of reference B = {b1, . . . , bn}. For
i = 0, 1, . . . , n−1 let Mi be the stabilizer of the i-object on c. Then, we have M0 = SUn(k).

Let the “shift” operator be given by:

s =


0 1 0 0

0 0
. . . 0

0 0 0 1
t 0 0 0

 .

Then, Mi = M si

0 = s−iM0s
i for i = 1, . . . , n− 1. Define the amalgam

M = {
⋂
j∈J

Mj | ∅ 6= J ⊆ I},

where the connecting homomorphisms are given by inclusion.

Proposition 10.1 Let n ≥ 4 and let k be infinite, or k = Fq2 with q ≥ 4. Then, the group
SUn(k[t, t−1], β) is the universal completion of the amalgam M = {Mi | i = 0, . . . , n− 1}.

Proof By Lemma 4.11, Corollary 2.10, and Lemma 6.5, Γϕ is a residually connected
geometry. By the results in Section 7 this geometry is connected and simply connected
under the conditions given in the Proposition. By Lemma 9.2, SUn(k[t, t−1], β) is flag-
transitive on Γϕ. Therefore, the result follows from Tits’ Lemma. �

10.2 The amalgams of all (slim) parabolics

We shall now describe the amalgam A of slim parabolics for SUn(k[t, t−1], β). Let

A1 =

(
SU2(k) 0

0 In−2

)
,

Moreover, for any i ∈ I = {0, 1, . . . , n − 1}, and taking subscripts modulo n, we define
Ai+1 = Asi

1 . For any subset ∅ 6= J ( I, let AJ = 〈Aj | j ∈ J〉SUn(k[t,t−1],β). Note that for
any i 6∈ J , we have AJ ≤Mi.

We now set
A = {AJ | ∅ 6= J ( I},

where the connecting homomorphisms are given by inclusion. Note that the amalgam
Ak = {AJ | ∅ 6= J ( I − {k}}, is an amalgam for Mk. This follows from [BeSh04, Ph77].
In the case where k = F4, this is not the case, but this will not affect our results, since we
will assume that |k| ≥ 16.

However, these groups are not the full parabolic subgroups for the residual geometries.
Next, we describe the amalgam of all parabolics of SUn(k[t, t−1], β). Let

B1 =

(
GU2(k) 0

0 Dn−2

)
∩ SUn(k),
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where Dl is the diagonal subgroup of SUl(k). Moreover, for any i ∈ I = {0, 1, . . . , n− 1},
and taking subscripts modulo n, we define Bi+1 = Bsi

1 . For any subset ∅ 6= J ( I, let
BJ = 〈Bj | j ∈ J〉SUn(k[t,t−1],β). Note that for any i 6∈ J , we have BJ ≤Mi. We now set

B = {BJ | ∅ 6= J ( I},

where the connecting homomorphisms are given by inclusion. Note that the amalgam
Bk = {BJ | ∅ 6= J ( I − {k}}, is the amalgam of maximal parabolics for the residual
geometry of Mk.

Lemma 10.2 Let n ≥ 4 and let k be infinite, or k = Fq2 with q ≥ 4. For each k ∈ I, the
maximal parabolic Mk is the universal completion of the amalgam Bk.

Proof This follows by Tits’ Lemma and the fact that the residue of the k-object is con-
nected, simply connected and that Mk acts flag-transitively on it. The connectedness and
simple connectedness follows from Lemma 6.5. Flag-transitivity follows from the flag-
transitive action of SUn(k[t, t−1], β) on Γϕ, which was proved in Lemma 9.2 �

In order to prove Theorem 1, we need to show that the universal completion of Ak is
Mk and use induction on the rank. In the case of finite k, this is proved by Bennett and
Shpectorov [BeSh04, Theorem 1.1] by first showing that the universal completion of Ak is
equal to the universal completion of Bk. Unfortunately, their proof makes use of the fact
that k is finite. Therefore we shall reprove some of their results in order to obtain the
result for infinite k.

Lemma 10.3 Let n ≥ 4. Then, the universal completion of Ak is also the universal
completion of Bk.

Proof Let G̃k be the universal completion of Ak. Since Mk is a completion of Ak, the
image ofAk in G̃k is isomorphic toAk and there is a surjective homomorphism π: G̃k →Mk.
Hence it suffices to show that the image of Ak in G̃k can be extended to a copy of Bk. Let
Di be the intersection of Ai with the diagonal subgroup D of Mk. Notice that D (and hence
every Di) normalizes every AJ . We adopt the tilde convention, so that for any element x or
subgroup H from Ak, x̃ and H̃ denote their images in G̃k. Notice that D is not a subgroup
of the amalgam Ak, and consequently we cannot use this convention to define D̃. Therefore
we define it indirectly as follows. Let D̃ be equal to the product of all the subgroups D̃i

(Notice that Di ⊆ Ai ∈ Ak and hence D̃i is defined.) We claim that there exists an
isomorphism D → D̃ extending the isomorphisms Di → D̃i. Indeed Di and Dj are both
contained in Ai,j and they commute element-wise. Therefore D̃i and D̃j also commute
elementwise. This proves that there exists a surjective homomorphism φ: Πi6=kD̃i → D̃.
However, we also have a canonical isomorphism of abstract groups γ: Πi6=kDi → Πi6=kD̃i.
Here the former group is D. Now the composition φ ◦ γ is a surjective homomorphism,
which restricts to an isomorphism Di → D̃i for each i. The restriction π: D̃ → D is
surjective and has φ ◦ γ as its inverse. This proves our claim.
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In a similar spirit, for J ⊆ I − {k}, define B̃J to be the product of the subgroups ÃJ

with D̃. For this definition to make sense, we must show that every D̃i normalizes ÃJ .
Note that AJ is generated by the subgroups Aj with j ∈ J . Inside Ai,j we see that Di

normalizes Ai and Aj. Hence D̃i normalizes every Ãj, implying that D̃i normalizes ÃJ .
Thus the subgroups B̃J are well defined.

We claim that with respect to the natural homomorphism π: G̃k → Mk, B̃J maps
isomorphically onto the group BJ . This map is clearly surjective. Since D̃ normalizes
B̃J , there is a surjective homomorphism ÃJ o D̃ → B̃J , whose kernel is K̃ = {(a, a−1) ∈
ÃJ o D̃ | a ∈ ÃJ ∩ D̃}. Similarly, there is a surjective homomorphism AJ o D → BJ ,
whose kernel is K = {(a, a−1) ∈ AJ o D | a ∈ AJ ∩ D}. The natural homomorphism π
now induces a surjective homomorphism (ÃJ o D̃)/K̃ → (AJ o D)/K. Now note that
AJ ∩ D = 〈Di | i ∈ J〉. Moreover, ÃJ ∩ D̃ ≥ 〈D̃i | i ∈ J〉. This shows that the natural
homomorphism is in fact injective.

Now it is clear that the natural homomorphism π: G̃k → Mk induces an isomorphism
from the amalgam {B̃J | ∅ 6= J ( I − {k}} onto the amalgam Bk. Thus we have extended
the image of the amalgam Ak to a copy of the Bk. It follows that these amalgams have the
same completions. �

Corollary 10.4 Let n ≥ 4 and let k be infinite, or k = Fq2 with q ≥ 4. Then, the universal
completion of Ak is Mk.

Proof This follows by combining Lemmas 10.2 and 10.3. �

Corollary 10.5 Let n ≥ 4 and let k be infinite, or k = Fq2 with q ≥ 4. Then, for
each subset ∅ 6= J ( I of size at least 3, the group AJ is the universal completion of
AJ = {AJ ′ | ∅ 6= J ′ ( J}. In particular, Mk is the universal completion of the amalgam
Ak,(2) = {AJ | ∅ 6= J ( I − {k} and |J | ≤ 2}.

Proof This follows by induction on |J | from Corollary 10.4. �

10.3 The slim rank-2 amalgam A(2) and the proof of Theorem 1

Let
A(2) = {AJ | ∅ 6= J ( I and |J | ≤ 2}. (10.1)

Proof (Of Theorem 1.) By Proposition 10.1, SUn(k[t, t−1], β) is the universal completion
of M.

Let Ĝ be the universal completion of the amalgam A(2) and let M̂k be the subgroup of

Ĝ generated by the subgroups corresponding to Ak,(2).
Since SUn(k[t, t−1], β) is a completion of A(2), there is a surjective homomorphism

τ : Ĝ → SUn(k[t, t−1], β). We now show that this map has an inverse. By Corollary 10.4,

each M̂k is a completion ofAk,(2). Therefore, there are surjective homomorphisms χk:Mk →
M̂k, which are isomorphisms on the elements of A(2) and so they extend a map between M
and Ĝ. Thus, Ĝ is realized as a completion of M. Since SUn(k[t, t−1], β) is the universal
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completion of M, we have a surjective homomorphism χ between SUn(k[t, t−1], β) and Ĝ,
which is the identity on A(2). The composition of χ and τ is a surjective homomorphism

which is the identity on A(2). By the universal property of Ĝ it has to be the identity. �
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