On the nucleus of the Grassmann embedding of the symplectic dual polar space $\text{DSp}(2n, \mathbb{F})$, $\text{char}(\mathbb{F}) = 2$

Rieuwert J. Blok
Department of Mathematics and Statistics
Bowling Green State University
Bowling Green, OH 43403
U.S.A.
blokr@member.ams.org

Ilaria Cardinali
Department of Information Engineering
University of Siena
I-53100 Siena, Italy
cardinali3@unisi.it

Bart De Bruyn
Department of Pure Mathematics and Computer Algebra
Ghent University
B-9000 Gent, Belgium
bdb@cage.ugent.be
Key Words: (symplectic) dual polar space, Grassmann embedding, spin embedding, Grassmannian of type C_n, nucleus

AMS subject classification (2000): Primary 51A45; Secondary 51A50;
Proposed running head:

The nucleus of the Grassmann embedding

Send proofs to:

Ilaria Cardinali
Department of Information Engineering
University of Siena
Via Roma, 56
I-53100 Siena, Italy
cardinali3@unisi.it
Abstract

Let $n \geq 3$ and let \mathbb{F} be a field of characteristic 2. Let $DSp(2n, \mathbb{F})$ denote the dual polar space associated with the building of Type C_n over \mathbb{F} and let G_{n-2} denote the $(n-2)$-Grassmannian of type C_n. Using the bijective correspondence between the points of G_{n-2} and the quads of $DSp(2n, \mathbb{F})$, we construct a full projective embedding of G_{n-2} into the nucleus of the Grassmann embedding of $DSp(2n, \mathbb{F})$. This generalizes a result of the paper [9] which contains an alternative proof of this fact in the case when $n = 3$ and \mathbb{F} is finite.
1 Introduction and preliminaries

We assume the reader is familiar with the concept of a partial linear rank two incidence geometry $\Gamma = (\mathcal{P}, \mathcal{L})$, also called a point-line geometry (See e.g. [5, 19]). The distance $\text{dist}(x, y)$ between two points $x, y \in \mathcal{P}$ of Γ will be measured in the collinearity graph of Γ, that is the graph (\mathcal{P}, E) whose set of edges E consists of all unordered pairs of points belonging to a line of Γ. By a subspace of Γ we mean a subset S of \mathcal{P} such that if $l \in \mathcal{L}$ and $|l \cap S| \geq 2$, then $l \subseteq S$. If S is a subspace of Γ, then we denote by \tilde{S} the point-line geometry (S, \mathcal{L}_S) where $\mathcal{L}_S := \{l \in \mathcal{L} | l \subseteq S\}$. A subspace S is called convex if for any three points $x, y, z \in \mathcal{P}$, $\text{dist}(x, y) + \text{dist}(y, z) = \text{dist}(x, z)$ and $x, z \in S$ imply that also $y \in S$. The maximal distance between two points of a convex subspace S is called the diameter of S.

Let $\Gamma_1 = (\mathcal{P}_1, \mathcal{L}_1)$ and $\Gamma_2 = (\mathcal{P}_2, \mathcal{L}_2)$ be two point-line geometries with respective distance functions $\text{dist}_1(\cdot, \cdot)$ and $\text{dist}_2(\cdot, \cdot)$. A full embedding of Γ_1 into Γ_2 is an injective mapping e from \mathcal{P}_1 to \mathcal{P}_2 such that $e(L) := \{e(x) | x \in L\}$ is a line of Γ_2 for every line L of Γ_1. A full embedding is called isometric if $\text{dist}_2(e(x), e(y)) = \text{dist}_1(x, y)$ for all $x, y \in \mathcal{P}_1$. If Γ_2 is a projective space and if $e(\mathcal{P}_1)$ generates the whole of Γ_2, then e is called a full projective embedding. In this case, the dimension of the projective space Γ_2 is called the projective dimension of e. Isomorphisms between full (projective) embeddings, which we will denote by the symbol \cong, are defined in the usual way.

Suppose $e : \Gamma \rightarrow \Sigma$ is a full embedding of the point-line geometry $\Gamma = (\mathcal{P}, \mathcal{L})$ into the projective space Σ, and α is a subspace of Σ satisfying:

(C1) $e(x) \not\in \alpha$ for every point $x \in \mathcal{P}$;
(C2) $\langle \alpha, e(x) \rangle \neq e(\alpha)$ for every two distinct points x and y of Γ.

Then the mapping $e/\alpha : \Gamma \rightarrow \Sigma/\alpha; x \mapsto \langle \alpha, e(x) \rangle$ is a full embedding of Γ into the quotient projective space Σ/α. If $e_1 : \Gamma \rightarrow \Sigma_1$ and $e_2 : \Gamma \rightarrow \Sigma_2$ are two full projective embeddings of Γ, then we say that $e_1 \geq e_2$ if there exists a subspace α of Σ_1 satisfying (C1), (C2) such that e_1/α is isomorphic to e_2.

An important class of point-line geometries are the dual polar spaces. With every non-degenerate polar space Π of rank n, there is associated a dual polar space Δ of rank n. The points of Δ are the maximal singular subspaces of Π (i.e. the singular subspaces of projective dimension $n - 1$) and the lines of Δ are the sets L_α of maximal singular subspaces containing a given singular subspace α of projective dimension $n - 2$. There is a bijective correspondence between the possibly empty singular subspaces of Π and the convex subspaces of Δ. If β is an $(n - 1 - k)$-dimensional, $k \in \{0, \ldots, n\}$, singular subspace of Π, then the set of all singular subspaces containing β is a convex subspace of Δ of diameter k. These convex subspaces are called quads if $k = 2$, hexes if $k = 3$ and maxes if $k = n - 1$. If F is a
convex subspace of Δ of diameter $k \geq 2$, then \tilde{F} is a dual polar space of rank k.

Suppose $\Delta = (\mathcal{P}, \mathcal{L})$ is a thick dual polar space of rank n. For every point x of Δ, let H_x denote the set of points at non-maximal distance (i.e., distance at most $n - 1$) from x. If $e : \Delta \to \Sigma$ is a full projective embedding of Δ and if F is a convex subspace of Δ, then e induces a full embedding e_F of F into a subspace Σ_F of Σ. A full embedding e of Δ into a projective space Σ is called polarized if $\langle e(H_x) \rangle$ is a hyperplane of Σ for every point x of Δ. If e is a full polarized embedding of Δ, then $N_e := \bigcap_{x \in \mathcal{P}} \langle e(H_x) \rangle$ is called the nucleus of the embedding e. The nucleus N_e satisfies the properties (C1) and (C2) above and hence there exists a full embedding $\tilde{e} := e/N_e$ of Δ into the projective space Σ/N_e. If e_1 is an arbitrary full polarized embedding of Δ, then by Cardinali, De Bruyn and Pasini [8], $e_1 \geq \tilde{e}$ and $\tilde{e}_1 \cong \tilde{e}$. The embedding \tilde{e} is called the minimal full polarized embedding of Δ. The following is also proved in [8].

Lemma 1.1 If F is a convex subspace of diameter at least 2 of Δ, then $(\tilde{e})_F$ is isomorphic to the minimal full polarized embedding of \tilde{F}.

Now, let $n \geq 3$ and let \mathbb{F} be a field of characteristic 2. Consider the dual polar space $DSp(2n, \mathbb{F})$ associated with the building of type C_n over \mathbb{F} (see Section 2). This dual polar space admits a full embedding e_{gr} into a projective space of dimension $\left(\binom{2n}{n} - \binom{2n}{n-2}\right) - 1$, called the Grassmann embedding of $DSp(2n, \mathbb{F})$. If Q is a quad of $DSp(2n, \mathbb{F})$, then $e_Q := (e_{gr})_Q$ is isomorphic to the Grassmann embedding of $DSp(4, \mathbb{F}) \cong O(5, \mathbb{F})$ into $PG(4, \mathbb{F})$ and hence N_{e_Q} is a singleton, see e.g. Section 2. Let G_{n-2} denote the following point-line geometry: the points of G_{n-2} are the quads of $DSp(2n, \mathbb{F})$ and the lines of G_{n-2} are the sets of quads of $DSp(2n, \mathbb{F})$ which contain a given line of $DSp(2n, \mathbb{F})$ and which are contained in a given hex of $DSp(2n, \mathbb{F})$. The following is the main result of this paper:

Main Theorem 1. The dimension of $N_{e_{gr}}$ is equal to $\left(\binom{2n}{n} - \binom{2n}{n-2}\right) - 2^n - 1$.
2. For every quad Q of $DSp(2n, \mathbb{F})$, the singleton N_{e_Q} is contained in $N_{e_{gr}}$.
3. The map $Q \mapsto N_{e_Q}$ defines a full projective embedding of G_{n-2} into $N_{e_{gr}}$.

The geometry G_{n-2} is isomorphic to the $(n-2)$-Grassmannian of type C_n, that is the point-line geometry with points the objects of rank $n-2$ of C_n (i.e. the spaces of vector dimension $n-2$) and with lines the sets $l_{[A,B]} := \{x \mid \text{rank}(x) = n-2, A \subset x \subset B\}$, where A and B are objects of rank $n-3$ and $n-1$, respectively. Grassmannians of polar spaces have attracted some attention recently. Embeddings, generating ranks, special subspaces, and hyperplane complements have recently been under investigation in the literature, see e.g. [1, 14, 12, 2, 13, 3, 4].

We will prove the main theorem in Section 4. This main theorem generalizes Theorem 1.3 of the paper [9] which contains an alternative proof of Main Theorem for the case when \(n = 3 \) and \(\mathbb{F} \) is a finite field of even characteristic.

2 Notation and the dimension of \(\mathcal{N}_{e_{gr}} \)

Let \(n \in \mathbb{N} \setminus \{0, 1\} \) and let \(\mathbb{F} \) be a field of characteristic 2. Let \(V \) be a 2\(n \)-dimensional vector space over \(\mathbb{F} \) equipped with a non-degenerate alternating form \((\cdot, \cdot)\). An ordered basis \((\overline{v}_1, \overline{v}_2, \ldots, \overline{v}_n, \overline{f}_1, \overline{f}_2, \ldots, \overline{f}_n)\) of \(V \) is called a hyperbolic basis of \(V \) (with respect to \((\cdot, \cdot)\)) if \((\overline{v}_i, \overline{v}_j) = (\overline{f}_i, \overline{f}_j) = 0\) and \((\overline{v}_i, \overline{f}_j) = \delta_{ij}\) for all \(i, j \in \{1, \ldots, n\} \).

Let \(\wedge^n V \) denote the \(n \)-th exterior power of \(V \) and let \(W \) denote the subspace of \(\wedge^n V \) generated by all vectors of the form \(\overline{v}_1 \wedge \overline{v}_2 \wedge \cdots \wedge \overline{v}_n \), where \(\overline{v}_1, \overline{v}_2, \ldots, \overline{v}_n \) are vectors of \(V \) satisfying \((\overline{v}_i, \overline{v}_j) = 0\) for all \(i, j \in \{1, \ldots, n\} \). The dimension of \(W \) is equal to \(\binom{2n}{n} - \binom{2n}{n-2} \), see e.g. Cooperstein[11] or De Bruyn [15].

The subspaces of \(V \) which are totally isotropic with respect to \((\cdot, \cdot)\) define a building of type \(\mathbb{B}_n \). We denote the associated dual polar space by \(\text{DSp}(2n, \mathbb{F}) \). We denote by \(\text{DO}(2n+1, \mathbb{F}) \) the dual polar space associated with the building of type \(\mathbb{B}_n \) which arises from a vector space of dimension \(2n + 1 \) over \(\mathbb{F} \) equipped with a non-degenerate quadratic form of Witt-index \(n \). The dual polar spaces \(\text{DSp}(2n, \mathbb{F}) \) and \(\text{DO}(2n+1, \mathbb{F}) \) are isomorphic if and only if the field \(\mathbb{F} \) is perfect (see e.g. De Bruyn and Pasini [18]). In [18] it is also shown that for any field \(\mathbb{F} \) (of characteristic 2), there exists an isometric full embedding of \(\text{DSp}(2n, \mathbb{F}) \) into \(\text{DO}(2n+1, \mathbb{F}) \).

For every point \(p = \langle \overline{v}_1, \overline{v}_2, \ldots, \overline{v}_n \rangle \) of \(\text{DSp}(2n, \mathbb{F}) \), let \(e_{gr}(p) \) denote the point \(\langle \overline{v}_1 \wedge \overline{v}_2 \wedge \cdots \wedge \overline{v}_n \rangle \) of \(\text{PG}(W) \). Notice that \(e_{gr}(p) \) is independent of the generating set \(\{\overline{v}_1, \overline{v}_2, \ldots, \overline{v}_n\} \) of \(p \). The map \(e_{gr} \) defines a full embedding of \(\text{DSp}(2n, \mathbb{F}) \) into \(\text{PG}(W) \), called the Grassmann embedding of \(\text{DSp}(2n, \mathbb{F}) \). Let \(\mathcal{N} := \mathcal{N}_{e_{gr}} \) denote the nucleus of the embedding \(e_{gr} \). The dual polar space \(\text{DO}(2n+1, \mathbb{F}) \) admits a full polarized embedding into the projective space \(\text{PG}(2^n - 1, \mathbb{F}) \) called the spin embedding of \(\text{DO}(2n+1, \mathbb{F}) \) (Chevalley [10], Buekenhout and Cameron [6], Cameron [7]). In view of the existence of an isometric full embedding of \(\text{DSp}(2n, \mathbb{F}) \) into \(\text{DO}(2n+1, \mathbb{F}) \), the dual polar space \(\text{DSp}(2n, \mathbb{F}) \) admits a full polarized embedding \(e_{sp} \) into a subspace \(\Sigma \) of \(\text{PG}(2^n - 1, \mathbb{F}) \). Now, by De Bruyn and Pasini [17, Corollary 1.5], any full polarized embedding of a thick dual polar space of rank \(n \) has projective dimension at least \(2^n - 1 \). Hence \(\Sigma = \text{PG}(2^n - 1, \mathbb{F}) \) and \(e_{sp} \) is the minimal full polarized embedding of \(\text{DSp}(2n, \mathbb{F}) \). This implies that the projective dimension of \(\mathcal{N} \) equals \(\binom{2n}{n} - \binom{2n}{n-2} - 2^n - 1 \).

3 The nucleus in the case \(n = 2 \)

In this section, we suppose that \(n = 2 \). Then \(\mathcal{N} \) is a singleton and the vector space \(W \) has dimension 5. Since \(p_1 = \langle \overline{v}_1, \overline{v}_2 \rangle \), \(p_2 = \langle \overline{f}_1, \overline{f}_2 \rangle \), \(p_3 = \langle \overline{v}_1, \overline{f}_2 \rangle \), \(p_4 = \langle \overline{v}_2, \overline{f}_1 \rangle \)
and \(p_5 = \langle \overline{e}_1 + \overline{e}_2, \overline{f}_1 + \overline{f}_2 \rangle \) are points of \(DS\Sigma(4, \mathbb{F}) \) and \(\overline{e}_1 \wedge \overline{e}_2, \overline{f}_1 \wedge \overline{f}_2, \overline{e}_1 \wedge \overline{f}_1, \overline{e}_2 \wedge \overline{f}_1, (\overline{e}_1 + \overline{e}_2) \wedge (\overline{f}_1 + \overline{f}_2) \) are linearly independent vectors of \(W \), we have
\[
W = \langle \overline{e}_1 \wedge \overline{e}_2, \overline{f}_1 \wedge \overline{f}_2, (\overline{e}_1 + \overline{e}_2) \wedge (\overline{f}_1 + \overline{f}_2) \rangle = \langle \overline{e}_1 \wedge \overline{e}_2, \overline{f}_1 \wedge \overline{f}_2, \overline{e}_1 \wedge \overline{f}_1, \overline{e}_2 \wedge \overline{f}_1, \overline{e}_1 \wedge \overline{f}_1 + \overline{e}_2 \wedge \overline{f}_2 \rangle.
\]

Now, the image of \(e_{gr} \) is a quadric \(Q \cong O(5, \mathbb{F}) \) of \(PG(W) \). The tangent hyperplane \(T(p_1) \) at the point \(e_{gr}(p_1) \) of \(Q \) is equal to \(\langle \overline{e}_1 \wedge \overline{e}_2, \overline{e}_1 \wedge \overline{f}_1, (\overline{e}_1 + \overline{e}_2) \wedge (\overline{f}_1 + \overline{f}_2) \rangle = \langle \overline{e}_1 \wedge \overline{e}_2, \overline{f}_1 \wedge \overline{f}_2, \overline{e}_1 \wedge \overline{f}_1 + \overline{e}_2 \wedge \overline{f}_2 \rangle \). Similarly, the tangent hyperplanes \(T(p_2) \), \(T(p_3) \) and \(T(p_4) \) at the points \(e_{gr}(p_2), e_{gr}(p_3) \) and \(e_{gr}(p_4) \) of \(Q \) are respectively equal to \(\langle \overline{f}_1 \wedge \overline{f}_2, \overline{e}_1 \wedge \overline{f}_1 + \overline{e}_2 \wedge \overline{f}_2 \rangle \), \(\langle \overline{e}_1 \wedge \overline{e}_2, \overline{f}_1 \wedge \overline{f}_2, \overline{e}_1 \wedge \overline{f}_1 + \overline{e}_2 \wedge \overline{f}_2 \rangle \), \(\langle \overline{e}_1 \wedge \overline{e}_2, \overline{f}_1 \wedge \overline{f}_2, \overline{e}_1 \wedge \overline{f}_1 + \overline{e}_2 \wedge \overline{f}_2 \rangle \) and \(\langle \overline{e}_1 \wedge \overline{e}_2, \overline{f}_1 \wedge \overline{f}_2, \overline{e}_1 \wedge \overline{f}_1 + \overline{e}_2 \wedge \overline{f}_2 \rangle \). Since \(\langle \overline{e}_1 \wedge \overline{f}_1 + \overline{e}_2 \wedge \overline{f}_2 \rangle \) is the unique point in the intersection \(T(p_1) \cap T(p_2) \cap T(p_3) \cap T(p_4) \), it necessarily is the unique point of the singleton \(N \).

4 Proof of Main Theorem

If \(F \) is a convex subspace of diameter at least 2 of \(DS\Sigma(2n, \mathbb{F}) \), then the Grassmann embedding \(e_{gr} \) of \(DS\Sigma(2n, \mathbb{F}) \) induces a full embedding \(e_F := (e_{gr})_F \) of \(\tilde{F} \) into a subspace \(\Sigma_F \) of \(PG(W) \). This embedding \(e_F \) is isomorphic to the Grassmann embedding of \(\tilde{F} \), see e.g. Cardinali, De Bruyn and Pasini [8, Proposition 4.10]. So, for every quad \(Q \) of \(DS\Sigma(2n, \mathbb{F}) \), the nucleus of \(e_Q \) consists of a single point. We will denote this point by \(e_N(Q) \). By the following lemma, \(e_N \) can be regarded as a map between the set of points of \(G_{n-2} \) and the set of points of \(N \).

Lemma 4.1

(i) For every quad \(Q \) of \(DS\Sigma(2n, \mathbb{F}) \), \(e_N(Q) \in N \).

(ii) \(N \) coincides with the subspace of \(PG(W) \) generated by the points \(e_N(Q) \), where \(Q \) is a quad of \(DS\Sigma(2n, \mathbb{F}) \).

Proof: Suppose \(N' \) is a subspace satisfying properties (C1) and (C2) of Section 1 with respect to the embedding \(e_{gr} \). Then for every quad \(Q \) of \(DS\Sigma(2n, \mathbb{F}) \), \(N' \cap \Sigma_Q \) satisfies properties (C1) and (C2) with respect to the embedding \(e_Q \). Moreover,
\[
e_Q/(N' \cap \Sigma_Q) \cong (e_{gr}/N')_Q. \tag{4.1}
\]

(i) Since \(e_{gr}/N \) is the minimal full polarized embedding of \(DS\Sigma(2n, \mathbb{F}) \), \((e_{gr}/N)_Q \) is isomorphic to the minimal full polarized embedding of \(\tilde{Q} \) for every quad \(Q \) of \(DS\Sigma(2n, \mathbb{F}) \) (see Lemma 1.1). From (4.1), it then follows that \(N \cap \Sigma_Q = N_{e_Q} = \{e_N(Q)\} \). Hence, \(e_N(Q) \in N \).

(ii) Suppose \(N' \) is the subspace of \(N \) generated by all points \(e_N(Q) \) where \(Q \) is a quad of \(DS\Sigma(2n, \mathbb{F}) \). Then for every quad \(Q \) of \(DS\Sigma(2n, \mathbb{F}) \), \(\{e_N(Q)\} \subseteq N' \cap \Sigma_Q \subseteq
$\mathcal{N} \cap \Sigma_Q = \{ e_{\mathcal{N}}(Q) \}$. Hence, $\mathcal{N}' \cap \Sigma_Q = \{ e_{\mathcal{N}'}(Q) \}$. By (4.1), the embedding $(e_{gr}/\mathcal{N}')_Q$ has projective dimension 3. Now, by De Bruyn [16, Theorem 1.6], if e' is a full polarized embedding of a dual polar space of rank n such that every induced quad embedding has projective dimension 3, then e' has projective dimension $2^n - 1$. Applying this here, we see that the full polarized embedding e_{gr}/\mathcal{N}' has projective dimension $2^n - 1$. This implies that $\mathcal{N}' = \mathcal{N}$.

Lemma 4.2 $e_{\mathcal{N}}$ maps in a bijective way any line of \mathcal{G}_{n-2} to some line of \mathcal{N}.

Proof: If H is a hex of $DSp(2n, \mathbb{F})$, then the full embedding e_H of \widetilde{H} induced by e_{gr} is isomorphic to the Grassmann embedding of \widetilde{H}. So, it suffices to prove the lemma in the case $n = 3$. Consider the line L^* of \mathcal{G}_{n-2} which consists of all quads of $DSp(6, \mathbb{F})$ which contain a given line L of $DSp(6, \mathbb{F})$. We can choose a hyperbolic basis $(\tilde{e}_1, \tilde{e}_2, \tilde{e}_3, \tilde{f}_1, \tilde{f}_2, \tilde{f}_3)$ of V in such a way that $L = \langle \tilde{e}_1, \tilde{e}_2 \rangle$. Let Q denote the quad of $DSp(6, \mathbb{F})$ corresponding to $\langle \tau_1 \rangle$ and for every $t \in \mathbb{F}$, let Q_t denote the quad of $DSp(6, \mathbb{F})$ corresponding to $\langle \tilde{e}_1 + t\tilde{e}_2 \rangle$. Then by Section 3, $e_{\mathcal{N}}(Q) = \langle \tilde{e}_1 \land \tilde{e}_2 \land \tilde{f}_2 + \tilde{e}_1 \land \tilde{e}_3 \land \tilde{f}_3 \rangle$. Since $(\tilde{e}_2 + t\tilde{e}_1, \tilde{e}_1, \tilde{e}_3, \tilde{f}_2, \tilde{f}_1 + t\tilde{f}_2, \tilde{f}_3)$ is a hyperbolic basis of V, we have $e_{\mathcal{N}}(Q_t) = \langle (\tilde{e}_2 + t\tilde{e}_1) \land \tilde{e}_1 \land (\tilde{f}_1 + t\tilde{f}_2) \rangle = \langle (\tilde{e}_2 \land \tilde{e}_1 \land \tilde{f}_1 + \tilde{e}_2 \land \tilde{e}_3 \land \tilde{f}_3) + t(\tilde{e}_1 \land \tilde{e}_2 \land \tilde{f}_2 + \tilde{e}_1 \land \tilde{e}_3 \land \tilde{f}_3) \rangle$. Hence, $e_{\mathcal{N}}$ defines a bijection between the line L^* of \mathcal{G}_{n-2} and a line of \mathcal{N}.

Lemma 4.3 The map $e_{\mathcal{N}}$ is injective.

Proof: Let Q_1 and Q_2 be two distinct quads of $DSp(2n, \mathbb{F})$. We need to show that $e_{\mathcal{N}}(Q_1) \neq e_{\mathcal{N}}(Q_2)$.

(i) If $Q_1 \cap Q_2$ is a line, then Lemma 4.2 implies that $e_{\mathcal{N}}(Q_1) \neq e_{\mathcal{N}}(Q_2)$.

(ii) Suppose that $Q_1 \cap Q_2$ is a singleton $\{x\}$. Let F denote the convex subspace of diameter 4 containing Q_1 and Q_2. Since the embedding e_F of \widetilde{F} induced by e is isomorphic to the Grassmann embedding of \widetilde{F}, we may suppose that $n = 4$. We can choose a hyperbolic basis $(\tilde{e}_1, \tilde{e}_2, \tilde{e}_3, \tilde{e}_4, \tilde{f}_1, \tilde{f}_2, \tilde{f}_3, \tilde{f}_4)$ of V in such a way that the point x corresponds to $\langle \tilde{e}_1, \tilde{e}_2, \tilde{e}_3, \tilde{e}_4 \rangle$ and that the quads Q_1 and Q_2 correspond to $\langle \tilde{e}_1, \tilde{e}_2 \rangle$ and $\langle \tilde{e}_3, \tilde{e}_4 \rangle$, respectively. Then by Section 3, $e_{\mathcal{N}}(Q_1) = \langle \tilde{e}_1 \land \tilde{e}_2 \land \tilde{e}_3 \land \tilde{f}_3 + \tilde{e}_1 \land \tilde{e}_2 \land \tilde{e}_4 \land \tilde{f}_4 \rangle = e_{\mathcal{N}}(Q_2)$.

(iii) Suppose Q_1 and Q_2 are disjoint. Then there exist maxes M_1 and M_2 such that $Q_1 \subseteq M_1$ and $Q_2 \subseteq M_2$ and $M_1 \cap M_2 = \emptyset$. We can choose a hyperbolic basis $(\tilde{e}_1, \tilde{e}_2, \ldots, \tilde{e}_n, \tilde{f}_1, \tilde{f}_2, \ldots, \tilde{f}_n)$ of V in such a way that M_1 corresponds to $\langle \tilde{e}_1 \rangle$ and M_2 corresponds to $\langle \tilde{f}_1 \rangle$. Then $e_{gr}(M_1)$ is the subspace of $PG(W)$ generated by all points of the form $\langle \tilde{e}_1 \land \tilde{g}_2 \land \tilde{g}_3 \land \cdots \land \tilde{g}_n \rangle$, where $\tilde{g}_2, \tilde{g}_3, \ldots, \tilde{g}_n$ are linearly independent vectors of $\langle \tilde{e}_2, \ldots, \tilde{e}_n, \tilde{f}_2, \ldots, \tilde{f}_n \rangle$ satisfying $\langle \tilde{g}_i, \tilde{g}_j \rangle = 0$ for all $i, j \in \{2, \ldots, n\}$. Similarly, $e_{gr}(M_2)$ is the subspace of $PG(W)$ generated by all points.
of the form \(\langle f_1 \land g_2 \land g_3 \land \cdots \land g_n \rangle \), where \(g_2, g_3, \ldots, g_n \) are linearly independent vectors of \(\langle e_2, \ldots, e_n, f_2, \ldots, f_n \rangle \) satisfying \(\langle g_i, g_j \rangle = 0 \) for all \(i, j \in \{2, \ldots, n\} \). Clearly, \(\langle e_{gr}(M_1) \rangle \) and \(\langle e_{gr}(M_2) \rangle \) are disjoint. This implies that \(e_N(Q_1) \neq e_N(Q_2) \).

\[\square \]

References

