
Extensions of isomorphisms for affine dual polar
spaces and strong parapolar spaces

Rieuwert J. Blok
Department of Mathematics
Michigan State University

East Lansing, MI 48824-1027 USA
blokr@member.ams.org

Key Words: dual polar spaces, parapolar spaces, hyperplane
complements, affine geometry, isomorphism extensions, Fundamental
Theorem of Projective Geometry.

AMS subject classification (2000): 51B25, 51A15, 51A50, 05B25,
22E20.



Proposed running head:

Extensions of affine isomorphisms

Send proofs to:

Rieuwert J. Blok
Dipartimento di matematica
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Abstract

Let B be a class of point-line geometries. Given Γi ∈ B with subspace Si for
i = 1, 2, does any isomorphism Γ1−S1 −→ Γ2−S2 extend to a unique isomorphism
Γ1 −→ Γ2? It is known to be true if B is the class of almost all projective spaces
or the class of almost all non-degenerate polar spaces. We show that this is true for
the class of almost all strong parapolar spaces, including dual polar spaces.

A special case occurs when Γ1 = Γ2 = Γ has an embedding into a projective space
P(V ) that is natural in the sense that Aut(Γ) ≤ PΓL(V ). Then the question becomes
whether P(V ) is also the natural embedding for Γ−S. Our result shows that in most
cases the stabilizer StabAut(Γ)(Γ−S) is faithful on Γ−S and equals Aut(Γ−S) and
so the answer is affirmative. We know that there exist some interesting exceptions.
These will be covered in a subsequent paper.



1 Introduction

A point-line geometry is a pair Γ = (P ,L), where P is a set whose elements are
called points and L is a set whose elements are subsets of P called lines. A point-
line geometry Γ is a partial linear space, if any two points are contained in at most
one line. We call Γ thick, if every line has at least three points. Note that this means
that a grid, although not thick as a building, is thick as a point-line geometry in the
sense defined here. Throughout the paper we will assume that point-line geometries
are partial linear and thick, unless specified otherwise.

Given a point-line geometry Γ = (P ,L), let X be any subset of P . If |l∩X| ≥ 2
for some line l ∈ L, then we call this intersection a line of X. The collection of
all lines of X is denoted L(X). We call X a subspace if all lines of X are in fact
lines of Γ. The subspace X is proper if ∅ 6= X 6= P . A (geometric) hyperplane of
Γ is a proper subspace H with the property that l ∩ H 6= ∅ for all l ∈ L. Note
that, although hyperplanes are “large”, it is not true that they are necessarily the
subspaces that are maximal with respect to containment.

Given a subspace S of Γ, let A = P − S and denote the geometry induced on
it by A = (A,L(A)). The point-line geometry A is called the (generalized) affine
geometry or subspace complement associated to S in Γ. We often loosely denote this
affine geometry by Γ− S.

Definition 1.1 A class B of point-line geometries is called affinely rigid (AR) if
and only if

(AR) given Γi ∈ B with a subspace Si (i = 1, 2), then any isomorphism Γ1−S1 −→
Γ2 − S2 extends uniquely to an isomorphism Γ1 −→ Γ2.

We consider the following question:

(Q) Under what conditions is a class B affinely rigid?

Taking Γ1 = Γ2 = Γ, this problem can be phrased as follows: is the group induced by
StabAut(Γ)(Γ−S) faithful on Γ−S and does it coincide with Aut(Γ−S)? Consider
also the following, more refined, question: Suppose that Γ is embedded into the
projective space P(V ) for some vector space V . Then one may think of V as a
“natural” embedding if every automorphism of Γ is induced by some (semi-) linear
automorphism of V . This is for instance true of the projective geometry P(V ) itself
by the fundamental theorem of projective geometry. Thus the question of whether
Aut(Γ− S) is contained in Aut(Γ) is strictly linked to the question of whether the
embedding of Γ− S into P(V ) is natural also.

Example 1.2 Let Γ = P(V ), where V = F
n+1
2 for some n ≥ 3. Suppose S =

P(H) for some subspace H ⊆ V of codimension 1. Then Γ − S as a geometry is
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the complete graph on 2n points. Now Aut(Γ) = SLn+1(F2) and StabAut(Γ)(Γ −
S) = 2n. SLn(F2). This group is faithful on Γ − S, but is smaller than Aut(Γ −
S) = Sym(2n). Note that Aut(Γ − S) ≤ SL2n(F2), which is the group of linear
automorphisms of the 2n-dimensional embedding for Γ− S.

Let us consider the lines of a generalized affine geometry Γ− S. Given a line L
of Γ and some subset of points l ⊆ L, if |l| ≥ 2 then, since Γ is a partial linear space,
l determines the line L uniquely. We say that l supports L and write l = L. We call
a line l of Γ − S short if l 6= l. Note that in this case l ∩ S consists of exactly one
point. Lines of Γ− S that are not short are called long.

Given a short line l of Γ−S, the unique point on l− l ∈ S is a non-deep point of
S. Points in S that are not collinear to a point in Γ−S are called deep. We denote
the non-deep and deep points for S by N (S) and D(S) respectively. The following
refinement of this notion will be crucial in this paper.

Definition 1.3 Following Shult [14] we define a sequence of subsets Di(S) as
follows: Set D−1(S) = P −S, let D0(S) be the set of non-deep points of S, and for
i ≥ 0 define

Di+1(S) = {p ∈ P | p is collinear to a point of Di(S)
but not to any point of Di−1(S)}.

We then set

D∗i (S) =
∞⋃
j=i

Dj(S).

Note that, for i ≥ 0, the set Di(S) is contained in S. The depth of S is the integer
d = max{i | Di(S) 6= ∅} if it is finite and ∞ otherwise.

We call a point-line geometry connected if its collinearity graph is connected.
The distance d(x, y) between points x and y is the length of a shortest path from x
to y in the collinearity graph of Γ. The diameter is the integer diam = max{d(x, y) |
x, y ∈ Γ} if it is finite, and diam =∞ otherwise. Clearly the depth of S is bounded
by the diameter.

We say that a class B of geometries respects short lines if for any two elements
Γi ∈ B, i = 1, 2, and subspaces Si and any isomorphism ε : Γ1 − S1 −→ Γ2 − S2 a
line l is short in Γ1−S1 if and only if lε is short in Γ2−S2. We say that a geometry
Γ respects short lines if the isomorphism class of Γ does.

We say that two lines l and m are concurrent if they intersect in a point; we
write l∗m. The main tool to study question (Q) will be the following.

Definition 1.4 A layer extendable or LE-class is a class B of point-line geometries
with the following properties:
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(LE1) Every element of B is a connected thick partial linear space,

(LE2) for every Γ ∈ B with subspace S ⊆ Γ the set D∗i (S) is a subspace of Γ for
every i ∈ N,

(LE3) given Γi ∈ B with subspace Si (i = 1, 2) and some isomorphism ε : Γ1−S1 −→
Γ2 − S2, for any two non-intersecting lines l1, l2 ∈ Γ1 − S1 we have

(LE3.1) l1 6= l1 if and only if lε1 6= lε1,

(LE3.2) l1∗l2 if and only if lε1∗lε2, and

(LE3.3) for any line h1 with |h1∩N (S1)| ≥ 2 there is a line h2 with |h2∩N (S2)| ≥ 2
such that l1 − l1 ∈ h1 if and only if lε1 − lε1 ∈ h2.

The name “layer extendable” stems from the fact that by (LE2) there exist, possibly
infinitely many, layers Γ − S = Γ −D∗0(S), Γ −D∗1(S), . . . , Γ − ∅ = Γ of subspace
complements, and condition (LE3) will turn out to be all that is needed to extend
an isomorphism Γ1 − D∗i (S1) −→ Γ2 − D∗i (S2) uniquely to an isomorphism Γ1 −
D∗i+1(S1) −→ Γ2 −D∗i+1(S2). Note that (LE3.1) implies that B respects short lines.

Example 1.5 It is fairly easy to see that the class of all projective planes and
all projective spaces of dimension n ≥ 3 not defined over F2 is an LE-class. In
Section 4, we give modified versions of results by Pasini and Shpectorov, by Pralle,
and by Cohen and Shult to see that the collection of non-degenerate polar spaces
forms an LE-class P (Theorem 4.1).

The motivation for defining LE-classes is the following main result.

Theorem 1 Let B be a class of point-line geometries satisfying (LE1) and (LE2).
Then B is an LE-class if and only if it is affinely rigid.

The scope of this theorem is enhanced by the fact that one can create new LE-
classes from old ones by taking certain unions (Lemma 3.3) and by using a local
property which implies (LE3) (Theorem 3.4).

We will now discuss the particular geometries we will work with. Before we can
do so properly we will need some fairly well-known definitions. We will assume
familiarity with polar spaces. There are many references for these geometries in the
literature, for instance Buekenhout and Shult [3], Tits [16], Cameron [5], Pasini [11],
and many more. Those familiar with dual polar spaces and parapolar spaces can
skip to the statement of Theorem 2.

A singular subspace of a point-line geometry is a subspace any two points of
which are collinear. A gamma space is a point-line geometry such that whenever l
is a line and p is a point, then p is collinear to either none, one, or all points on
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l. Thus, singular subspaces and polar spaces are gamma spaces. A set of points
C is called convex if any geodesic in the collinearity graph between two points of
the subspace is entirely contained in the collinearity graph of that subspace. The
convex closure of a set of points X is the smallest convex subspace containing X.

A symplecton is a subspace isomorphic to a non-degenerate polar space of rank
at least 2 that is the convex closure of any two of its points at distance 2.

A dual polar space is a point-line geometry whose points are the maximal singular
subspaces of some non-degenerate polar space of rank at least 2. The lines are the
collections of maximal singular subspaces containing a common singular subspace
of codimension 1. These geometries were characterized in terms of points and lines
in Cameron [4]. The symplecta of a dual polar space are polar spaces of rank 2,
often called quads.

Definition 1.6 A parapolar space is a connected partial linear gamma space to-
gether with a family of geodetically closed subspaces, each isomorphic to a non-
degenerate polar space of rank at least 2, called symplecta, such that any line is
contained in a symplecton and any quadrangle is contained in a unique symplecton.
A strong parapolar space is a parapolar space in which any two points at distance 2
are contained in a symplecton.

The above definition was first given in Cohen [7]. This is a unified definition
for dual polar spaces and strong parapolar spaces as defined in Cooperstein [8], or
Shult [14]. Similarly, the present definition of parapolar space unifies the former
concepts of dual polar spaces and parapolar spaces.

Examples of parapolar spaces other than dual polar spaces are all polar spaces
of rank at least 3 as well as the Lie incidence geometries of type An,i with 1 < i < n
(Grassmannians), Dn,n−1, Dn,n (half-spin geometries), E6,1, E6,6, and E7,7 (Bourbaki
labeling [2]) (see also Cooperstein [8] and Hanssens [10] for characterizations).

We prove the following results about these geometries. In Section 4, we prove
that the thick non-degenerate polar spaces which are not a grid, form an LE-class
(Theorem 4.1). For affine polar spaces, we show in Section 5 that most of them have
a certain convexity property (Theorem 5.1). As a consequence, any isomorphism
between subspace complements of strong parapolar spaces will send affine symplecta
to affine symplecta. Using this result and Theorem 4.1, we check in Section 6 that a
large class of strong parapolar spaces satisfies the conditions of Theorem 3.4. More
precisely, we obtain the following main result on strong parapolar spaces. Here, as
in the remainder of the paper, we indicate most geometries using the name of the
associated Lie group.

Theorem 2 Let PP be the class of thick strong parapolar spaces with the following
properties
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(PP1) the symplecta of rank 2, if any, have lines of length at least 4 and are not a
grid,

(PP2) the symplecta of rank 3, if any, are not isomorphic to O7(2) or O+
6 (2) (the

Klein quadric over F2).

Then PP forms an LE-class. As a consequence, if two elements Γi ∈ PP, i = 1, 2,
have a subspace Si, then any isomorphism Γ1 − S1 −→ Γ2 − S2 extends uniquely to
an isomorphism Γ1 −→ Γ2.

Thus the theorem applies for instance to all dual polar spaces with lines of
length at least 4 and whose quads are not grids. It also applies to all Lie incidence
geometries of type An,i (1 < i < n) not defined over F2, and all Lie incidence
geometries of type Dn,n−1, Dn,n, E6,1, E6,6, and E7,7 (Bourbaki labeling). The proof
of Theorem 2 given here does not work for grassmannians over F2 or for the dual
polar space associated to SP2n(2). As for the conclusion of this theorem, it is likely
that it is indeed false for the dual polar space associated to SP2n(2). Partial results
on the grassmannians of type An,i, n ∈ N, 1 ≤ i ≤ n, over F2 show that, to maintain
the conclusion of Theorem 2 one must impose the (probably sufficient) restriction
that 2 < i < n− 1.

2 Deep points

The following result, proved by Shult in [14], gives a criterion for condition (LE2)
in Definition 1.4 to be satisfied.

Lemma 2.1 (i) If Γ is connected and S is a proper subspace of Γ, then

S =
∞⊎
i=0

Di(S),

where ] denotes disjoint union.

(ii) If, in addition, Γ has the property that any two points at distance 2 from each
other are contained in a subspace that is a non-degenerate polar space of rank
at least 2, then the sets

D∗j (S) =
∞⊎
i=j

Di(S)

are subspaces of Γ.
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If S is clear from the context we’ll write D∗j and Di for D∗j (S) and Di(S). Note that
D∗1(S) is the set of deep points of S.

We note that the conclusion of the second assertion was proved, in the form
of Lemma 2.2 in [14], under the assumption that Γ is a strong parapolar space
in the classical sense and not under the assumption presented here. However, the
(classical) strong parapolar condition was used to ensure that the convex closure of
two points at distance 2 is a non-degenerate polar space of rank at least 2. In fact,
the existence of any subspace isomorphic to a non-degenerate polar space of rank
at least 2 containing these two points suffices.

3 Extensions of affine isomorphisms

Definition 3.1 For a point-line geometry Γ with a subspace S, two lines l and m
of Γ−S are called parallel if and only if l = m or l− l = m−m 6= ∅. The resulting
equivalence relation is often called a parallelism. The equivalence class containing l
is called the parallel class of l and is denoted [l].

We now prove Theorem 1.
Proof: Let B be an LE-class. Let Γj ∈ B and Sj (j = 1, 2) be such that there is
an isomorphism ε0 : Γ1 − S1 −→ Γ2 − S2.

We will prove the following claim by finite induction on i:

(C) There exists a unique isomorphism εi : Γ1−D∗i (S1) −→ Γ2−D∗i (S2) extending
ε0 : Γ1 − S1 −→ Γ2 − S2.

Once we’ve proved this, it follows that any isomorphism ε0 : Γ1−S1 −→ Γ2−S2

extends uniquely to an isomorphism ε : Γ1 −→ Γ2. Namely, for any point p ∈ S1

there exists a unique i such that p ∈ Di−1(S1) by Lemma 2.1. Define pε = pεi . Then
ε is a unique extension of ε0 because εi is a unique extension of ε0 to Γ1 −D∗i (S1).
Note that also by uniqueness we have pεj = pεi for all j ≥ i.

It is clear that ε : Γ1 −→ Γε1 is an isomorphism that uniquely extends ε0. If
Γε1 6= Γ2, then Γε1 is a subspace complement of Γ2. Hence Γε1 contains a short
line and so does Γ1. This is clearly impossible and so ε : Γ1 −→ Γ2 is the unique
isomorphism extending ε0. Thus B is affinely rigid, as desired.

The statement (C) is trivially true for i = 0. We prove the induction step by
showing the following.

(C’) Any isomorphism ε : Γ1 −D∗i−1(S1) −→ Γ2 −D∗i−1(S2) extends uniquely to an
isomorphism η : Γ1 −D∗i (S1) −→ Γ2 −D∗i (S2).

6



For all i = 0, 1, 2, . . ., and j = 1, 2, let Γij = Γj −D∗i (Sj) = (P ij,Lij).
For j = 1, 2, we now define a partition Πi−1

j on the short lines of Γi−1
j . Since

D∗i−1(Sj) is a subspace, we can consider the collection of short lines of Γi−1
j . Note

that Γi−1
j is the complement of the subspace D∗i−1(Sj) in the geometry Γj. Define

a parallelism on the lines of Γi−1
j in the sense of Definition 3.1 and let Πi−1

j be the
partition whose elements are the equivalence classes of this parallelism.

We now prove (C’). Define a map π : Di−1(S1) −→ Di−1(S2) as follows. For
every p ∈ Di−1(S1) there exists a line l in Γi−1

j such that p = l− l. Choose any such

line l and let pπ = lεi−1 − lεi−1 .
We claim that π is a well-defined bijection. It is clear that pπ ∈ Di−1(S2). By

(LE3.1) and since ε is an isomorphism, the map l 7→ lε is a bijection between the
collection of short lines of Γi−1

1 and the collection of short lines of Γi−1
2 . Also by

(LE3.2), two short lines l and m are parallel in Γi−1
1 if and only if lε and mε are

parallel in Γi−1
2 . Finally, by definition of parallel, two short lines l and m of Γi−1

j

satisfy l− l = m−m if and only if l and m are parallel. Thus π is well-defined and
injective. Clearly π has an inverse and so it is a bijection.

We have established that the extension of ε by π is a bijection η : Γi1 −→ Γi2
between the subspace complements Γi1 and Γi2. We now prove that η is in fact an
isomorphism that uniquely extends ε. For this it suffices to check that under η,
lines of Γi1 correspond to lines of Γi2 and vice versa. More precisely, as D∗i−1(Sj) and

D∗i (Sj) are both subspaces of Γj, for every line l of Γij, l − l is at most one point,
and l is of one of the types (L1-L3) below:

(L1) l is long in Γi−1
j ,

(L2) |l ∩Di−1(Sj)| = 1, in which case l = l ∩ Γi−1
j is short in Γi−1

j and l = l, or

(L3) l ⊆ Di−1(Sj) in which case l has at least two points since Γj is thick and l− l
is at most a single point in the subspace D∗i (Sj).

Let l be a line of Γi1. We check the cases (L1-L3).
(L1): If l is a long line of Γi−1

1 , then by (LE3.1) lη = lε is a long line of Γi−1
2 .

(L2): If l = k for some short line k of Γi−1
1 , then kε is a short line of Γi−1

2 and
lη = kε ∪ (k − k)π = kε ∪ (kε − kε) = kε, which is a line of type (L2) in Γi2.

(L3): In this case l = {k − k | k − k ∈ l}, where the k’s are short lines of Γi−1
j .

Note that l is a line of Γi1 with |l ∩Di−1(S1)| ≥ 2. Now as N (D∗i−1(Sj)) = Di−1(Sj)
for j = 1, 2, by (LE3.3) there is a line l2 of Γi2 with |l2 ∩ Di−1(S2)| ≥ 2 such that
k − k ∈ l if and only if kε − kε ∈ l2. Thus lη = l2 is a line of type (L3) in Γi2.

By the same reasoning applied to the inverse of η, defined as the extension of ε−1

by π−1, we find that every line of Γi2 is the η image of a line in Γi1. This establishes
that η is an isomorphism extending ε.
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It remains to prove that η is the unique isomorphism extending ε to an isomor-
phism Γi1 −→ Γi2. Suppose η′ is another such isomorphism. Then ζ = η′◦η−1 is an
automorphism of Γi2 fixing Γi−1

2 point-wise. Consider any point p ∈ Di−1(S2). Then
there is a line l on p intersecting Γi−1

2 by definition of Di−1. In fact k = l ∩ Γi−1
2 is

a short line with k = l and k − k = {p}. Now clearly ζ fixes k point-wise and since
Γ2 is partial linear and thick, it also fixes l. Hence ζ fixes l − k = {p} and ζ is the
identity on Γi2. Thus η′ = η and η is unique.

Thus we have established the ‘if’ part of the theorem. We shall now prove the
‘only if’ part.

Suppose that B is affinely rigid, that is, it satisfies (AR). We must check that B
satisfies (LE3.1)-(LE3.3). Let Γj ∈ B have subspace Sj for j = 1, 2 such that there
is an isomorphism ε : Γ1−S1 −→ Γ2−S2. Furthermore, let l1, l2 be non-intersecting
lines of Γ1 − S1. By (AR) there is a unique isomorphism η : Γ1 −→ Γ2 extending ε.
Clearly if l is a short line of Γ1−S1, then l

η
= lε since η preserves lines and extends

ε and since Γj is a thick partial linear space. Hence (l − l)η = lε − lε.
Thus (LE3.1) and (LE3.2) follow at once.
As for (LE3.3), since η is an isomorphism extending ε, we have N (S1)η = N (S2).

Hence given a line h1 with |h1∩N (S1)| ≥ 2, the line h2 = hη1 satisfies |h2∩N (S2)| ≥ 2
and as (Γ1 − S1)η = Γ2 − S2 and (l − l)η = lε − lε, clearly l1 − l1 ∈ h1 if and only if
l1
ε − lε1 ∈ h2. Thus (LE3.3) is satisfied. �

We now present two ways of creating new LE-classes from old ones.

Lemma 3.2 Any subset of an LE-class is again an LE-class. �

Lemma 3.3 Let Bi, i = 1, 2, be LE-classes and suppose that there is no isomor-
phism Γ1−S1 −→ Γ2−S2, where Γi belongs to Bi and has proper subspace Si. Then
B = B1 ∪ B2 is again an LE-class. �

Theorem 3.4 Let B be a class of point-line geometries satisfying (LE1) and (LE2)
of Definition 1.4. Suppose in addition that there is an LE-class T of subspaces of
elements of B such that for every Γ ∈ B we have

(L) every line of Γ is contained in some element of T , and

(IL) any two distinct intersecting lines of Γ are contained in an element of T ,

(T) given Γi ∈ B with subspace Si (i = 1, 2) and some isomorphism ε : Γ1−S1 −→
Γ2 − S2, for every T1 ∈ T with T1 ∩ (Γ1 − S1) 6= ∅, there is T2 ∈ T with
T2 ∩ (Γ2 − S2) 6= ∅ such that (T1 − S1)ε = T2 − S2.

Then B is an LE-class.
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Proof: We only have to check that (LE3.1-LE3.3) are satisfied in B.
Let Γj ∈ B have subspace Sj (j = 1, 2) and suppose there is an isomorphism

ε : Γ1 − S1 −→ Γ2 − S2. Now let l1, l2 be short lines of Γ1 − S1. (LE3.1): By (L)
applied to l1, there exists T1 ∈ T such that T1 contains l1. Since T1 ∩ (Γ1−S1) 6= ∅,
by (T) there is T2 ∈ T with T2 ∩ (Γ2−S2) 6= ∅ such that ε(T1−S1) = T2−S2. Now
ε : T1 − S1 −→ T2 − S2 is an isomorphism and by (LE3.1) applied to the LE-class
T , l1 6= l1 if and only if lε1 6= lε1. Hence (LE3.1) is satisfied.

(LE3.2): If l1∗l2, then by (IL) there is an element T1 ∈ T containing l1 and l2.
Since T1 ∩ (Γ1 − S1) 6= ∅, by (T) there is T2 ∈ T with T2 ∩ (Γ2 − S2) 6= ∅ such
that ε(T1 − S1) = T2 − S2. Now ε : T1 − S1 −→ T2 − S2 is an isomorphism and by
(LE3.1) applied to the LE-class T , also lε1∗lε2. Now the same argument applied to
the isomorphism ε−1 shows that also lε1∗lε2 implies l1∗l2. Thus (LE3.2) is satisfied.

(LE3.3): Suppose h1 is a line of Γ1 with |h1∩N (S1)| ≥ 2. Then there is a line m
intersecting h1 with m∩(Γ1−S1) 6= ∅. By (IL) there is an element T1 ∈ T containing
h1 and m. Since T1 ∩ (Γ1 −S1) 6= ∅, by (T) there is T2 ∈ T with T2 ∩ (Γ2 −S2) 6= ∅
such that ε(T1 − S1) = T2 − S2.

Note that m∩h1 is a non-deep point of the subspace T1∩S1 of T1. Also note that
since D(T1∩S1) is a subspace of T1, at least two points of h1 are non-deep points of
T1∩S1 in T1 and hence are non-deep points of S1 also. Now ε : T1−S1 −→ T2−S2 is
an isomorphism and so by (LE3.3) applied to the LE-class T , there is a line h2 in Γ2

with |h2∩N (S2)| ≥ 2 such that for all short lines l1 of T1−S1, l1−l1 ∈ h1 if and only
if lε1− lε1 ∈ h2. Now let l2 6= l1 be any other short line of Γ1−S1 with l2− l2 = l1− l1.
Then since Γ1 is a partial linear space, l1 ∩ l2 = ∅ and since ε is an isomorphism,
also lε1 ∩ lε2 = ∅. By (LE3.2) since l1∗l2, also lε1∗lε2 and so lε2 − l2 = lε1 − lε1 ∈ h2. The
fact that lε1− lε1 ∈ h2 implies l1− l1 ∈ h1, follows by applying the same argument to
the isomorphism ε−1.

Since B has properties (LE3.1)-(LE3.3), it is an LE-class. �

Corollary 3.5 A class of geometries that satisfies the assumptions of Theorem 3.4,
is affinely rigid. �

Example 3.6 The class A2,1 of projective planes is clearly an LE-class. (LE1) is
true by definition of a projective plane. (LE2) is satisfied because any subspace S
is either a single point or a line and Di(S) = ∅ for i ≥ 1. (LE3.1)+(LE3.2) follow
from the fact that any two lines that do not intersect in Γ−S, must intersect in S.
(LE3.3) is satisfied because there is at most one such line hi which exists precisely
if there is more than one parallel class.

The collection An,1 of all n-dimensional projective spaces with at least four points
per line forms an LE-class. This follows from Theorem 3.4 where A2,1 plays the role
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of T . Clearly (L) and (IL) are satisfied. We check (T): For i = 1, 2, let Γi ∈ An,1

have subspace Si and suppose there is an isomorphism ε : Γ1−S1 −→ Γ2−S2. Now
if T1 − S1 6= ∅, then one easily shows that, since the lines have at least four points,
T1−S1 is the subspace of Γ1−S1 generated by any three points x, y, z ∈ T1−S1 not all
on one line. Clearly then there is T2 ∈ T such that T2−S2 is the subspace of Γ2−S2

generated by the three points xε, yε, and zε. It follows that (T1 − S1)ε = T2 − S2.

4 Polar spaces

In this section we will discuss some general properties of polar spaces we will need
later. Let P be the collection of thick non-degenerate polar spaces of rank at least
2 that are not a grid.

The main result is the following.

Theorem 4.1 The collection P is an LE-class.

Large portions of this statement can be found in the literature in a different form.
We will prove it here and indicate where and how it overlaps with known results.

Note that by definition polar spaces are partial linear, so by our thickness as-
sumption P satisfies (LE1). By Lemma 2.1 P satisfies (LE2). We prove that P
satisfies (LE3) by means of Theorem 1 in verifying property (AR).

Recall that non-degenerate polar spaces of rank 2 are generalized quadrangles.
Let Q be the collection of thick generalized quadrangles that are not a grid.

Proposition 4.2 The collection Q is an LE-class.

A special case of this statement was proved by Pasini and Shpectorov [12, Lemma
2.3]. Another result close to this can be found in Pralle [13]. Our setting differs from
theirs in that in (LE3) we do not a priori assume that Γ1 and Γ2 are isomorphic.
However, in proving this result we use some of their techniques.

We say that a generalized quadrangle has order (s, t) if every point is contained
in t+ 1 lines and every line contains s+ 1 points. Not every generalized quadrangle
has an order, but one can prove that any thick generalized quadrangle that is not
a grid has an order (s, t); clearly then s, t ≥ 2. The following observation explains
why we have to exclude grids (t = 1) from Q.

Lemma 4.3 For i = 1, 2, let Γi be a generalized quadrangle with subspace Si. Let
ε : Γ1 − S1 −→ Γ2 − S2 be an isomorphism. Then either both Γ1 and Γ2 are grids,
possibly of different order, or there exist s, t, possibly infinite, such that the Γi are
of order (s, t).
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Proof: Given any point p ∈ Γi−Si, the map l 7→ l∩(Γi−Si) is a bijection between
the set of lines of Γi on p and the set of lines of Γi−Si on p since Γi has thick lines.
Therefore there is a bijection between the lines on a point p ∈ Γ1−S1 and the lines
on pε ∈ Γ2 − S2. In particular, Γ1 is a grid if and only if Γ2 is a grid. Note that
if Γ1 and Γ2 are grids, it is possible that S1 = ∅ and S2 consists of one line or two
intersecting lines; in particular then Γ1 and Γ2 are not necessarily isomorphic.

If Γi is not a grid for i = 1, 2, then it has order (si, t) with si, t ≥ 2, possibly
infinite.

If s1 is infinite, then so is s2, and vice versa and they are the same cardinal
number.

Now suppose s1 and s2 are finite and not equal. By reversing the isomorphism
if necessary, we may assume that s1 < s2. Since the lines of Γ1 − S1

∼= Γ2 − S2

have length s1 or s1 + 1 and also have length s2 or s2 + 1, all lines of Γ1 − S1 must
have length s1 + 1 = s2. Then S1 = ∅, S2 is a hyperplane, and Γ1

∼= Γ2 − S2

is a generalized quadrangle of order (s2 − 1, t). By the one-or-all axiom in the
generalized quadrangles Γ2 − S2 and Γ2, no two lines l and m meeting Γ2 − S2 can
meet S2 in the same point, for then none of the points of l would be collinear to
any of the points of m in Γ2 − S2. Since t ≥ 2, the subspace S2 is a generalized
quadrangle of order (s2, t − 1). If l,m would be two lines of Γ2 − S2 concurrent in
a point of S2, then no point of l would be collinear to any point of m in Γ2 − S2

in contradiction to the assumption that Γ2 −S2 is a generalized quadrangle. Hence
there is at most one line in Γ2 − S2 through a given point of S2 whence S2 is a
generalized quadrangle of order (s2, t− 1). Consider a line L of S2. Every point of
L belongs to exactly one line that meets Γ2 − S2 in s2 points, whereas every point
of Γ2 −S2 is collinear with exactly one point of L. Thus s2(s2 + 1) = |Γ2 −S2|. On
the other hand, |Γ2−S2| = ((s2− 1)t+ 1)s2, as Γ2−S2 is a generalized quadrangle
of order (s2 − 1, t). Hence s2

2 + s2 = s2
2t − s2t + s2. This forces s2 = (s2 − 1)t, so

that s2 = t = 2. Thus Γ2 is isomorphic to O5(2) and S2 is isomorphic to O+
4 (2).

But then s1 = 1 contradicting that Γ1 is thick. Thus again s1 = s2. �

Note 4.4 Note that for a generalized quadrangle Γ with a subspace S, two lines
l and m of Γ− S are parallel in the sense of Definition 3.1 if and only if one of the
following holds: (1) l = m or (2) no point on l is collinear to a point of m.

The following observation explains the use of Note 4.4.

Lemma 4.5 For i = 1, 2, let Γi be a generalized quadrangle with subspace Si.
Let ε : Γ1 − S1 −→ Γ2 − S2 be an isomorphism. Then ε preserves parallelism. In
particular it provides a bijection between the parallel classes of Γ1 − S1 and the
parallel classes of Γ2 − S2. �
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Denote collinearity by ⊥ and, for any subset X ⊆ P , let X⊥ be the set of
points collinear with all points of X (a point is assumed to be collinear to itself).
The following two elementary lemmas set short lines and their parallel classes in
relation.

Lemma 4.6 Let Γ ∈ Q have a subspace S. If l ∈ L(Γ−S) with |[l]| ≥ 2, then l is
short.

Proof: Let l and m be parallel in Γ− S. Since each point of m is collinear with
a point in l, each point of m is collinear to a point of l− l which is just one point x
since S is a subspace. Hence l − l = x = m−m and l is short. �

Lemma 4.7 Let Γ ∈ Q have a subspace S. Let l ∈ L(Γ− S) be short and let x be
the unique point l ∩ S. Then

[l] = {m ∈ L(Γ− S) | m ∩ S = {x}}.

Proof: “⊆”: If |[l]| = 1, this is trivial. Suppose |[l]| ≥ 2, then this follows from
the last remark in the proof of Lemma 4.6.

“⊇”:Let m ∈ L(Γ− S) be such that m ∩ S = {x}. Then there is no point on l
collinear to any point of m by the one-or-all axiom in the generalized quadrangle Γ.
Thus m ∈ [l]. �

The following lemma characterizes the situations in which short lines exist.

Lemma 4.8 Let Γ = (P ,L) ∈ Q with a subspace S. Then Γ− S has a short line
if and only if one of the following holds.

(a) There is a line l with |[l]| ≥ 2. In this case l is short.

(b) There is a line l with |[l]| = 1 and l = {p ∈ Γ − S | p ∈ m ∈ L(Γ − S) =⇒
|[m]| = 1}. In this case l is the unique short line with |[l]| = 1 and S = x⊥− l,
where x is the unique point of l ∩ S.

(c) Γ is isomorphic to O5(2) and S is isomorphic to O+
4 (2). In this case every

line l of Γ− S is short and satisfies |[l]| = 1.

We note that in case (b) there will also be lines as described in (a). However, in
case (c) there are no lines as described in (a) or (b).

Lemma 4.8 is proved using Lemmas 4.6, 4.7, 4.9, and 4.10. In the interest of
presentation we prove it here.
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Proof: Clearly any line l of Γ − S is either long or short and either |[l]| = 1 or
|[l]| ≥ 2. If |[l]| ≥ 2, then l is necessarily short by Lemma 4.6. The two cases left
are the ones where |[l]| = 1 and l is either long or short. Lemma 4.7 is used to
prove Lemma 4.9 which tells us that if l is a short line with |[l]| = 1, then either
Γ = O5(2) and S = O+

4 (2) or S = x⊥ − l where x is the unique point of l − l. One
easily checks that in the former case all lines l of Γ−S are short and satisfy |[l]| = 1.
Finally, by Lemma 4.10 the latter case occurs precisely if l is as described in case
(b) of Lemma 4.8. �

The following lemma tells for which Γ and S short lines l with |[l]| = 1 may
exist.

Lemma 4.9 Let Γ ∈ Q have a subspace S. Suppose that l is a short line of Γ−S
with |[l]| = 1. Let x be the unique point on l ∩ S. Then

(a) S = x⊥ − l, or

(b) Γ is isomorphic to O5(2) and S is isomorphic to O+
4 (2). Every line l of Γ−S

is short and satisfies |[l]| = 1.

Proof: Let Γ have order (s, t), where s, t ≥ 2 possibly infinite.
First note that S contains t lines on x. If this were not the case, then x would

be a point of S contained in at least two lines meeting Γ − S, whence |[l]| ≥ 2 by
Lemma 4.7.

If all points of S are collinear to x, then S ⊆ x⊥ and so S is the set of all but
one of the lines on x. Thus the situation is as in (a).

Now assume S does contain a point that is not collinear to x. Then it follows
that S itself is a non-degenerate generalized quadrangle.

The following elegant argument is due to Jonathan I. Hall. We first show that
every point y of S is on exactly one line not contained in S. Let L = l. First let
y ∈ S be not collinear to x. Then since y is collinear to a point of L that does not
belong to S there is at least one line M on y not contained in S. Note that any
other such line on y would have to intersect L as well since x is collinear with a
point on that line not in S. Thus creating a triangle, there is no further line not
in S through y and M . Since S is non-degenerate and s ≥ 2, its non-collinearity
graph is connected so that each of its points is on a unique line not contained in S.
In particular S has order (s, t− 1).

We will show that in fact s = t = 2. Suppose there exist collinear u and v in S
that are both not collinear to either x or y. Let K and N be the unique lines on
u and v not contained in S. Now K must intersect L and M in their intersection
point and the same is true of N . Thus we find a triangle, a contradiction.
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It is easy to verify that this configuration x, y, u, v occurs unless s = t = 2.
Thus Γ is isomorphic to O5(2). Also S is isomorphic to O+

4 (2). Thus the situation
is as described in (b). Since every point of S is on exactly one line not contained
in S and every line of Γ−S meets S it follows from Lemma 4.7 that every line l of
Γ− S is short and satisfies |[l]| = 1. �

Lemma 4.10 Let Γ ∈ Q have a subspace S. Then S = x⊥ − l, where l is a short
line l with |[l]| = 1 and x is the unique point on l − l if and only if

B = {p ∈ Γ− S | p ∈ m ∈ L(Γ− S) =⇒ |[m]| = 1}

is a line.

Proof: “ =⇒ ”: We show that l = B. Let L = l and let p be a point on l. We
show that p ∈ B. Since Γ does not contain triangles, p is not collinear to any point
of S − {x} so any other line on p is long and hence only parallel to itself. Now let
q be a point of Γ − S not on l. We show that q 6∈ B. Since q is not collinear to x,
given any line k on x contained in S there is a line m on q meeting k in some point
z 6= x. Since k is the only line on z in S and Γ is not a grid, there is some line
n 6= m on z not contained in S. Thus by Lemma 4.7, l is contained in a parallel
class of size at least 2 so that q 6∈ B.

“⇐=”: Let l = B and let L = l. We show that l is short and satisfies |[l]| = 1.
We first claim that L∩ S is a point x. Suppose that a ∈ Γ− (S ∪B) belongs to

a line intersecting B in a point p. Then by assumption there is a line m on a that
belongs to a parallel class of size at least 2 and so by Lemmas 4.6 and 4.7 a is collinear
to some point y ∈ S. Let M = m. Now y is not on a line N intersecting B in a
point q because then n = N − S is a line on q ∈ B parallel to m 6= n contradicting
the definition of B. By the one-or-all axiom in the generalized quadrangle Γ, y must
be collinear to at least one point of L and so this point must belong to S. Call this
point x.

Now suppose there is a line K 6= L on x not contained in S. Take some point a
on K − S. Clearly a 6∈ B so there is a line m on a that belongs to a parallel class
of size at least 2 and as before it is collinear to some point y ∈ S −{x}. Again, this
point y must be collinear to x. But then x, a, y form a triangle which is impossible
since Γ is a generalized quadrangle.

Thus all lines on x, except L, are contained in S. Hence l is a short line with
|[l]| = 1. Since l is the only short line with |[l]| = 1 , it follows that S = x⊥ − l by
Lemma 4.9. �

We are now ready to prove Proposition 4.2
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Proof: Note that by definition generalized quadrangles are partial linear, so by
our thickness assumption Q satisfies (LE1). Also, by Lemma 2.1 Q satisfies (LE2).
We now check that Q satisfies (LE3). Let Γj ∈ Q have subspace Sj, for j = 1, 2
and suppose there is an isomorphism ε : Γ1 − S1 −→ Γ2 − S2. Let l1, l2 be lines of
Γ1 − S1.

(LE3.1): We check cases (a-c) in Lemma 4.8. (a): Suppose |[l1]| ≥ 2. Then by
Lemma 4.5 also |[lε1]| ≥ 2 and so lε1 is short.

(b): Suppose |[l1]| = 1 and l1 = {p ∈ Γ1 − S1 | p ∈ m ∈ L(Γ1 − S1) =⇒ |[m]| =
1}. By Lemma 4.5 for every line l ∈ Γ1−S1 we have |[l]| = 1 if and only if |[lε]| = 1.
This also holds for ε−1 and so lε1 = {p ∈ Γ2−S2 | p ∈ m ∈ L(Γ2−S2) =⇒ |[m]| = 1}.
Hence lε1 is short also.

(c): Suppose Γ1
∼= O5(2) and S1

∼= O+
4 (2). Then by Lemma 4.3 and the unique-

ness of a generalized quadrangle of order (2, 2), also Γ2
∼= O5(2). Now clearly every

line of Γ2−S2 is short also. Applying the above reasoning to ε−1 we find that in all
cases l1 ∈ Γ1 − S1 is short if and only if lε1 ∈ Γ2 − S2 is short.

(LE3.2): Since l1 and l2 do not intersect in Γ1 − S1, but l1 and l2 do intersect,
these lines are short. By Lemma 4.7 l1 − l1 = l2 − l2 if and only if [l1] = [l2]. By
Lemma 4.5 this happens if and only if [lε1] = [lε2]. This proves (LE3.2).

(LE3.3): In a generalized quadrangle the lines are the cliques in the collinearity
graph. Therefore it suffices to show that for any two short lines l1 and m1 of Γ1−S1

the points p1 = l1− l1 and q1 = m1−m1 are collinear if and only if p2 = lε1− lε1 and
q2 = mε

1 −mε
1 are collinear. We note that since Γj is a generalized quadrangle, pj

and qj are non-collinear if and only if there are lines Lj and Mj on pj and qj that
intersect in Γj −Sj. That is pj and qj are non-collinear in Γj if and only if there are
short intersecting lines l′j and m′j in Γj −Sj such that l′j ∈ [lj] and m′j ∈ [mj]. Using
(LE3.2) and that ε is an isomorphism, we find that p1 and q1 are (non-) collinear if
and only if p2 and q2 are (non-) collinear. �

Let P3 be the class of thick non-degenerate polar spaces of rank at least 3.

Note 4.11 If a polar space Γ ∈ P3 has a subspace S, then a plane of Γ − S is
either a projective plane, an affine plane, or a projective plane minus a point. These
planes are preserved by automorphisms of Γ − S. In case the lines of Γ have at
least four points, this is because these planes are the subspaces generated by three
pairwise collinear points not on a single line and if the lines of Γ have three points,
these planes are the intersections of size 4 or 6 of maximal singular subspaces.

The parallelism in Γ − S in the sense of Definition 3.1 can be made explicit as
follows. Two lines l and m are parallel if and only if one of the following holds:
(1) l = m, or (2) l and m are non-intersecting lines contained in an affine plane
or projective plane minus a point of Γ − S, or (3) l and m are related by a finite
sequence of relations as in (2).
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The following result is due to Cohen and Shult [6, Proposition 2.7] and Shult [15].

Proposition 4.12 Let Γi ∈ P3 have subspace Si for i = 1, 2. Then any isomor-
phism ϕ : Γ1 − S1 −→ Γ2 − S2 extends uniquely to an isomorphism ϕ : Γ1 −→ Γ2.

We sketch the proof exactly as in Shult [15].
Proof: The case that both S1 and S2 are hyperplanes is covered by Proposition
2.7 of [6]. However, the proof for arbitrary subspaces S1 and S2 is essentially the
same. The non-deep points of Si, i = 1, 2, correspond bijectively to the parallel
classes of lines. The union of the lines in an extended parallel class [l] containing
the short line l is the set

∆(l) = {a ∈ Γ1 − S1 | a⊥ ∩ l = ∅ or l}.

This follows essentially since m ∈ [l] − {l} if and only if m and l intersect in the
point l − l = m − m. Now by the one-or-all axiom, given a point a ∈ m, either
a⊥ ⊇ l or a⊥ ∩ l = m ∩ l ∈ S.

If S1 has a deep point p1, then necessarily S1 = p⊥1 . Hence S1 is a hyperplane.
Consequently, all lines of Γ1 − S1 are short. Now, as Γ1 has rank > 2, a line l is
short if and only if |[l]| ≥ 2. So, |[l]| ≥ 2 for every line in Γ1 − S1. Since ε is an
isomorphism, we then also have |[m]| ≥ 2 for every line m of Γ2−S2. Hence all lines
of Γ2 − S2 are short and S2 is a hyperplane. Thus we are led back to Proposition
2.7 of loc. cit.. �

Corollary 4.13 The class P3 is an LE-class.

Proof: Note that by definition non-degenerate polar spaces are partial linear, so
by our thickness assumption P3 satisfies (LE1). By Lemma 2.1 P3 satisfies (LE2).
Now by Proposition 4.12 and Theorem 1, P3 also satisfies (LE3). �

We now prove Theorem 4.1.

Proof: Clearly P = Q ∪ P3. Both Q and P3 are LE-classes. Furthermore, if
Γ1 ∈ Q, Γ2 ∈ P3, then for any subspace Si of Γi there can be no isomorphism
Γ1 − S1 −→ Γ2 − S2. This is because the largest singular subspaces of Γ1 − S1 are
the lines, whereas Γ2−S2 always contains projective, punctured projective, or affine
planes. Thus by Lemma 3.3, P is an LE-class. �

Corollary 4.14 The collection An,1 ∪ P of all projective spaces with lines of size
at least 4 together with the collection of all non-degenerate polar spaces other than
grids forms an LE-class.
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Proof: This follows from Lemma 3.3. By Example 3.6 and Theorem 4.1 both
An,1 and P are LE-classes. Suppose Γ1 ∈ An,1 and Γ2 ∈ P have subspaces S1 and
S2 respectively. Then Γ1 −S1 is singular and Γ2 −S2 is not, hence no isomorphism
Γ1 − S1 −→ Γ2 − S2 exists. �

Finally we mention a result on polar spaces that will be needed in the next
section.

Lemma 4.15 The complement of a proper subspace in a non-degenerate thick polar
space of rank at least 2 is connected, non-degenerate, and has diameter at most 3.

Proof: Let Γ = (P ,L) be a thick non-degenerate polar space. Let S be a proper
subspace and set A = P − S. Denote collinearity by ⊥.

For any two points p, q ∈ A we show that there is a path of points and lines in
A from p to q.

If p and q are on a common line l, then p, l, q is a path in A connecting p and q
and we are done.

If p and q are not collinear, then let l be an arbitrary line on p. Since Γ is non-
degenerate one can find a line m on q opposite to l, that is, such that l⊥ ∩m = ∅.
Then because lines of Γ are thick and intersect the subspace S in none, one, or all of
their points, one of the following must happen: (1) the unique point r on m collinear
to p belongs to A, (2) the unique point s on l collinear to q belongs to A, or (3)
there exist points t, u ∈ A different from p, q, r, s and on l and m, respectively, that
are collinear.

In all cases there is a path of points and lines in A connecting p to q. It also
follows that Γ− S has diameter at most 3.

Next we show that Γ − S is non-degenerate. Consider an arbitrary point x ∈
Γ−S. Since Γ is non-degenerate, there exist lines L and M on x such that no point
of L−x is collinear to a point of M −x. Now since Γ is thick and at most one point
of both L and M belongs to the subspace S, there exist points y ∈ L− (x∪ S) and
z ∈M − (x− S). Clearly y and z are non-collinear. �

We note that this type of argument works for dual polar spaces and in fact also
for the metasymplectic space F4.

5 Convexity of affine polar spaces

To prove Theorem 2 in Section 6, we apply Theorem 3.4 to a class PP of thick
strong parapolar spaces where the collection P of the symplecta of the elements of
PP plays the role of T . In order to satisfy condition (T) we need to ensure that
any isomorphism between affine parapolar spaces takes affine symplecta, which are
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affine polar spaces, to affine symplecta. This follows from the fact that such (affine)
symplecta are uniquely determined by any two of their points at distance 2 in the
sense of Theorem 5.1 below which we will prove here.

Given a point-line geometry A we call a set of points X 2-convex (in A) if it has
the property that, for any x, y ∈ X at distance at most 2, all points on a geodesic
of A from x to y are also contained in X. The 2-convex closure of X is the smallest
2-convex subspace containing X. We will frequently investigate the 2-convex closure
of subspace complements. Note that if A is such a subgeometry of Γ, then the 2-
convex closure of a point subset of A means the closure in A, but not in Γ. Note
that in that case geodesics of A need not be geodesics of Γ, but geodesics of length
2 are.

Theorem 5.1 Let Γ be a non-degenerate thick polar space of rank at least 2. Then
any non-empty subspace complement is the 2-convex closure of any two of its points
at distance 2, except possibly if Γ is “sparse”, that is, if Γ has rank 2 and some lines
of length 3, or Γ is isomorphic to O+

6 (2) or O7(2).

The exceptional cases of Theorem 5.1 lead to the excluded geometries in The-
orem 2. Namely our proof of Theorem 2 in Section 6 does not work for these
geometries since they have subspace complements that are not 2-convex closed. We
do not have for the assertion of Theorem 2 for these exceptional geometries, only
that our proof does not work for them. As remarked after Theorem 2 in the Intro-
duction, the author is investigating these exceptional cases and conjecture there are
examples not satisfying the assertion of Theorem 2.

We will first address the case where Γ is a non-degenerate polar space of rank 2,
that is, a generalized quadrangle.

Proposition 5.2 Let Γ be a generalized quadrangle. If every line of Γ has at least
four points, then any non-empty subspace complement is the 2-convex closure of any
two of its points at distance 2.

Proof: Let S be a proper subspace of Γ = (P ,L) and let A be the point-line
geometry induced on A = P −S. Let a and b be any two points at distance 2 in A.
Such points exist: simply look at two lines intersecting at a point c of A.

Let C be the 2-convex closure of {a, b} in A. We will show that C = A.
Let L and M be lines on a and b, respectively, intersecting in c ∈ A. Also, let

l = L ∩ A and m = M ∩ A.
Clearly l,m ⊆ C.
Now take a point x ∈ A− (l∪m). We show that x also belongs to C. There are

four cases:
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Case 1: x is collinear to points y ∈ l and z ∈ m. Then x lies on a minimal path
from y to z and as y, z ∈ C also x ∈ C.

Case 2: x is collinear to y ∈ l and the unique point of M in S. Let M ′ be
the line on x and y. Now every point of M ′ is collinear to precisely one point on
M . Then, as there are at least four points on M ′, there is at least one point x′ in
M ′ − (l ∪ S) that is collinear to some point z in m. By the previous case, x′ ∈ C
and so x ∈M ′ ⊆ C.

Case 3: x is collinear to the points L∩S and M ∩S. Let L′ and M ′ be the lines
of Γ on x intersecting M and L respectively. Let y be a point of L′ −M different
from x and let z be a point of M ′ − L different from x. Then y is collinear to a
point of l and z is collinear to a point of m, hence both belong to C by the previous
case. Clearly x lies on a minimal path from y to z and therefore belongs to C.

Case 4: x is collinear to c. Consider any point z ∈ A collinear to x, but not to
c. Since z is collinear to points on L and M different from c, the preceding cases
show that z ∈ C. Clearly also c ∈ C and therefore x being on a minimal path from
c to z also belongs to C.

This concludes the proof. �

Proposition 5.3 Let Γ be a non-degenerate polar space of rank at least 3. If Γ
has rank at least 4 or every line of Γ has at least four points, then any non-empty
subspace complement is the 2-convex closure of any two of its points at distance 2.

Proof: Let S be a subspace of Γ = (P ,L) and let A be the point-line geometry
induced on A = P − S. Let a and b be any two points at distance 2 in A. Such
points exist as A is non-degenerate by Lemma 4.15.

Let C be the 2-convex closure of {a, b} in A. We will show that C = A.
Let a′ be any neighbor of a in A. We will prove that a′ ∈ C and that there exists

a point b′ ∈ C at distance 2 from a′. By Lemma 4.15 we then are done.
Consider the polar space P = {a, b}⊥. Since a and b have a common neighbor in

A, the subspace P ∩S of P is not equal to P . We use the notation of definition 1.3
for the geometry P with subspace P ∩S and, for i = −1, 0, 1, . . ., set Di = Di(P ∩S)
and D∗i = D∗i (P ∩ S). Note that since P has diameter 2, we have D2 = ∅, so that,
for instance, D∗0 = D0∪D1. Furthermore, remark that points of P belong to D−1(S)
or D0(S), but that there may exist points in D1 = D1(P ∩ S) which are deep with
respect to P ∩ S) in P , but non-deep with respect to S in Γ.

Let l0 be the line on a and a′ and denote the point l0 ∩ P by p. We will prove
by induction on i = −1, 0, 1, that if p ∈ Di, then a′ belongs to C.

If p ∈ D−1, then p belongs to A, whence to C, and so a′ ∈ C.
Now let i ≥ 0. The induction hypothesis is that if l′ is a line of A through a

such that l′ meets P in a point of Di−1, then every point x on l′ belongs to C.
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We distinguish two partially overlapping cases.
Case 1: Γ has rank at least 4. Consider the polar geometry Pp of lines and planes

of P on p. Since D∗i is a subspace of P and p ∈ D∗i , also the geometry D∗i,p of lines
and planes of D∗i on p is a subspace of Pp. It is not equal to Pp since, by definition
of Di, at least one line of P on p intersects Di−1.

We show that there are two lines l and m of P on p that are not coplanar and
meet Di−1. The lines l and m correspond to non-collinear points of Pp−D∗i,p. These
clearly exist as Pp has rank at least 2 and is non-degenerate.

Consider points q ∈ l ∩ Di−1 and r ∈ m ∩ Di−1. Let q′ ∈ A be a neighbor of
a on the line aq and define r′ likewise on ar. By induction q′ and r′ both belong
to C. Note that q′ and a′ are on the plane 〈a, p, q〉Γ and r′ and a′ are on the plane
〈a, p, r〉. Thus q′ and r′ are at distance 2 in A and a′ is a common neighbor of q′

and r′. Thus a′ belongs to C.
Case 2: Γ has rank at least 3 and is defined over a field F of size at least 3. We

know that at least one line of P on p meets Di−1. Call this line l and let π be the
plane of Γ on a and l. Since l − {p} ⊆ Di−1, it follows by induction that all points
q′ of π ∩A such that the line aq′ meets l−{p}, belong C. Then since the lines of Γ
have at least 4 points, any subspace containing these points in fact contains π ∩A.
Therefore all points of π ∩ A, including a′, belong to the subspace C of A.

Thus in all cases a′ belongs to C.
Now we must find b′ ∈ C at distance 2 from a′. Since P is non-degenerate, it

contains a point z not collinear to p. As Γ is thick, there is at least one point on the
line az that does not belong to S and is not equal to a. Call this point b′. Then by
the above also b′ belongs to C. Clearly b′ is at distance 2 from a′ so we are done. �

The remainder of this section is devoted to handling the case where Γ is a non-
degenerate polar space of rank 3 over F2.

We will need the next result only for rank n = 3, but it is more natural to state
it for general rank. It could be extracted from the classification of polar spaces of
rank at least 3 due to (in alphabetical order) F. Buekenhout, A. Cohen, H. Cuypers,
P. Johnson, C. Lefèvre, A. Pasini, E. Shult, and J. Tits. This special case can also
be found in Cameron [5] where it is proved using an argument due to J.I. Hall.

Theorem 5.4 (Theorem 7.5.1. in Cameron [5]) A non-degenerate polar space of
finite rank at least 2 all lines of which have three points is the polar space of a
quadratic form over F2 on a vector space of finite dimension.

Lemma 5.5 Let Γ = (P ,L) be an embeddable non-degenerate polar space of finite
rank n ≥ 3 over F2. Let V be its natural orthogonal embedding and let S ⊆ P be
any subspace of Γ. If S contains a line, then

〈S〉V = V if and only if S = Γ.
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Proof: The “if” part is clear. Now assume that 〈S〉V = V . We first verify that S
is a connected non-degenerate polar space of finite rank. We use the Buekenhout-
Shult axioms (see [3]).

(BS1) Every line of S contains at least three points because its lines are lines of
the thick polar space Γ.

(BS2) No point is collinear with all other points. If this were the case, then
since 〈S〉V = V we would find a point p of Γ that is collinear to all points of Γ
contradicting that Γ is non-degenerate.

The axiom on finiteness of chains of singular subspaces (BS3) and the one-or-
all axiom (BS4) are directly inherited from Γ since the points, lines and singular
subspaces of S are points, lines and singular subspaces of Γ and Γ satisfies these
axioms. Thus S is a non-degenerate polar space of finite rank.

Since S contains a line L, and S satisfies the one-or-all axiom, every point of S
is collinear to some point of L. Thus S is connected.

By Theorem 5.4 Γ is a quadratic polar space on a vector space of finite dimension.
Since an anisotropic quadratic form over F2 does not exist if dim(V ) ≥ 3, the Witt

index of a non-degenerate quadratic form over F2 is at least bdim(V )−1
2
c. Thus Γ is

one of O+
2n(2), O−2n+2(2), or O2n+1(2). Also if dim(V ) is even, then S is one of O+

2k(2),

O−2k(2) and if dim(V ) is odd, then S is O2k+1(2), where k = bdim(V )−1
2
c. By looking

at the dimensions of the embedding we see that if Γ is O2n+1(2), then Γ = S. Next,
if Γ is O−2n+2(2), then also Γ = S by considerations of the embedding dimension and
the Witt index. Finally, if Γ is O+

2n(2), then by considerations of the embedding
dimension we see that S must be O+

2n(2) or O−2(n−1)+2(2). In Γ the totally singular

subspaces of dimension (n−1) and n on a common (n−2)-space X form the points
and lines of a 3×3 grid. If S were O−2n(2), then at least two of the five (n−1)-spaces
of S on X must be contained in a common n-space of Γ. As S is a subspace, this
n-space should entirely belong to S contradicting that S has Witt index n−1. Thus
again Γ = S. �

Note 5.6 Although we do not need it here, a statement similar to Lemma 5.5 can
be made for arbitrary polar spaces in finite dimension. In that case, for V one should
take the dominant embedding of Γ (c.f. Tits [16]). The proof, albeit somewhat more
technical, then proceeds roughly along the same lines.

Corollary 5.7 Let Γ = (P ,L) be a non-degenerate polar space of rank n ≥ 3 over
F2. Let V be its natural orthogonal embedding and let S ⊆ P be a proper subspace of
Γ. Then S is contained in a hyperplane of Γ or it is a set of pairwise non-collinear
points.

Proof: Suppose that S is not a set of pairwise non-collinear points. Then S
contains a line and, by Proposition 5.5, since S 6= Γ we know that U = 〈S〉V is a
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proper subspace of V . Take some hyperplane H of V such that H ⊇ U . Then H∩P
is a hyperplane of Γ containing S. �

According to the above results the only non-degenerate polar spaces of rank 3
with three points per line are the quadratic polar spaces of type O+

6 (2), O7(2), and
O−8 (2). We will now study the 2-convexity of the related generalized affine polar
spaces.

Lemma 5.8 Let Γ = (P ,L) be a polar space of rank 3 over the field F2. Then
the complement of a subspace S is the 2-convex closure of any two of its points at
distance 2, except possibly if

(1) Γ is isomorphic to O7(2) and S is contained in a hyperplane of type O−6 (2), or

(2) Γ is isomorphic to O+
6 (2) and S is contained in a hyperplane of type O5(2).

If, in the exceptional cases, S is the hyperplane itself, then A is not the 2-convex
closure of any two of its points at distance 2.

Note that we can characterize all exceptional cases by the fact that the hyper-
plane regarded as a polar space has Witt index 2 rather than 3. Note also that
O−8 (2) does not have such hyperplanes.

Proof: The setup of the proof is identical to that of Proposition 5.3. Let S be a
subspace of Γ = (P ,L) and let A be the point-line geometry induced on A = P−S.
Let a and b be any two points at distance 2 in A. Such points exist since A is
non-degenerate by Lemma 4.15.

Let C be the 2-convex closure of {a, b} in A. We will show that C = A. Let a′

be any neighbor of a in A. We will prove that a′ ∈ C and that there exists a point
b′ ∈ C at distance 2 from a′. By Lemma 4.15 we then are done.

Consider the rank 2 polar space P = {a, b}⊥. Since a and b have a common
neighbor in A, the subspace P ∩ S of P is not equal to P . We use the notation of
definition 1.3 for the geometry P with subspace P ∩ S and, for i = −1, 0, 1, . . ., set
Di = Di(P ∩ S) and D∗i = D∗i (P ∩ S). Note that since P has diameter 2, we have
D2 = ∅, so that, for instance, D∗0 = D0 ∪D1.

Let l0 be the line on a and a′ and denote the point l0 ∩ P by p. We will prove
by induction on i = −1, 0, 1, that if p ∈ Di, then a′ belongs tot C. If p ∈ D−1, then
p belongs to A, whence to C, and so a′ ∈ C.

Now let i ≥ 0. The induction hypothesis is that if l′ is a line of A through a
such that l′ meets P in a point of Di−1, then every point x on l′ belongs to C. It
suffices to show the following for i = 0, 1:

(*) any point p of Di is on two lines contained in P and meeting Di−1.
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Namely, given lines l and m on p ∈ Di as in (*), consider points q ∈ l ∩ Di−1 and
r ∈ m ∩ Di−1. Let q′ ∈ A be a neighbor of a on the line aq and define r′ likewise
on ar. Note that if q ∈ D−1, then q′ = q and if q ∈ D0, then q′ = aq − {a, q}, and
similarly for r′. By induction q′ and r′ both belong to C. Note that q′ and a′ are
on the plane 〈a, p, q〉Γ and r′ and a′ are on the plane 〈a, p, r〉. Thus q′ and r′ are at
distance 2 in A and a′ is a common neighbor of q′ and r′. Thus a′ belongs to C.

It then remains to find b′ ∈ C at distance 2 from a′. Since P is non-degenerate,
it contains a point z not collinear to p. As Γ is thick there is at least one point on
the line az that does not belong to S and is not equal to a. Call this point b′. Then
by the above also b′ belongs to C. Clearly b′ is at distance 2 from a′. This proves
our claim.

We will now concentrate on (*). If i = 1, then p is the unique point of D1 since
P is a non-degenerate generalized quadrangle with a proper subspace P ∩ S which
can have at most one deep point. Hence any line on p meets D0. Thus it suffices to
show that any non-deep point p of P ∩S is contained in at least two lines contained
in P and meeting P ∩A. Let V be the natural embedding for Γ. By Corollary 5.7, S
is either a set of pairwise non-collinear points or it is contained in some hyperplane
H of Γ of the form H ∩ P for some hyperplane H of V .

In the former case any two lines in P ∩ P on p will do.
In the latter case let H ⊇ S be a hyperplane. In fact we may assume that H = S

because P − S is the 2-convex closure of P −H in P − S. Namely, if x ∈ P − S is
non-deep for H, then there is a line on x meeting P −H in two points and we are
done. If x ∈ H−S is deep in H, then it is the common neighbor of two non-collinear
non-deep points of H in P − S so by the previous case we are done.

So given a hyperplane H we have to decide if we can find two lines in P meeting
Γ−H that contain the non-deep point p. We address this problem for each of the
geometries O+

6 (2), O7(2), and O−8 (2), individually.
(1) Let Γ be isomorphic to O−8 (2). Then P is of type O−6 (2). So p is contained in

five lines of P . Checking the possible geometries P ∩H and using that p is non-deep
one verifies that at most three of these lines are contained in P ∩ H. Thus we can
find the desired two lines on p.

(2) Let Γ be isomorphic to O7(2). Then P is of type O5(2). One verifies that
one can find the desired two lines provided P ∩H is not of type O+

4 (2).
Assume now that P ∩H is of type O+

4 (2). Let H be the 6-dimensional subspace
of V supporting H and let U ⊆ H be the subspace of V of dimension 4 spanned by
P ∩ H. Then U⊥ supports a geometry of type O3(2). It contains the non-collinear
points a, b, and the subspace W = U⊥ ∩ H of dimension 2. Since a and b do not
belong to H and {a, b}⊥ ∩ H = U , it follows from the geometry of U⊥ that W
contains no points of Γ. Thus H = U ⊕W is of type O−6 (2). One can verify, for
instance by explicitly creating the graph Γ−H, that in this case the 2-convex closure
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of any two points at distance 2 in A is a set of 9 points whose collinearity graph is
the tri-partite graph K3:3:3. Thus A having 36 points is not the 2-convex closure of
any two of its points at distance 2.

(3) Let Γ be isomorphic to O+
6 (2). Suppose that H has a deep point x. Let H

be the 5-dimensional subspace of V supporting H and let U ⊆ H be the subspace
of V of dimension 3 supporting P ∩ H. It is clear that U⊥ = 〈a, b, x〉V supports a
geometry of type O3(2).

Considering that U ∩ U⊥ is the 1-dimensional non-singular radical of both U⊥

and U , we find that also U supports a geometry of type O3(2). In particular, P ∩H
does not contain lines.

The geometry supported by P is of type O+
4 (2) and so p is contained in two lines

of P both of which intersect P ∩A. It now follows that A is the 2-convex closure of
any two of its points at distance 2.

If H does not have a deep point, then one can verify, for instance by explicitly
creating the graph Γ−H, that the 2-convex closure of any two points of A is a set
of 6 points whose collinearity graph is the tri-partite graph K2:2:2. Thus A having
20 points is not the 2-convex closure of any of its points at distance 2. �

We now prove Theorem 5.1.

Proof: This follows from Propositions 5.2, 5.3, and Lemma 5.8. �

6 Strong parapolar spaces

In this section we will prove Theorem 2.
Recall that PP is the class of thick strong parapolar spaces with the following

properties

(PP1) the symplecta of rank 2, if any, have lines of length at least 4 and are not a
grid,

(PP2) the symplecta of rank 3, if any, are not isomorphic to O7(2) or O+
6 (2) (the

Klein quadric over F2).

We will now prove Theorem 2.

Proof: Let PP be the class of strong parapolar spaces satisfying (PP1) and (PP2)
above.

We will use Theorem 3.4 to prove that PP forms an LE-class. It then follows
from Theorem 1 that PP is affinely rigid, as desired.

(LE1): By definition of a parapolar space, PP satisfies (LE1).
(LE2): By Lemma 2.1 the class of all strong parapolar spaces satisfies (LE2).
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Let T be the collection of symplecta of the members of PP. By definition a
symplecton is a non-degenerate polar space of rank at least 2 and so T forms an LE-
class by Theorem 4.1. We now check properties (L), (IL), and (T) of Theorem 3.4.

(L),(IL): These are true by Definition 1.6 of a strong parapolar space.
(T): The argument will rely on the following two observations. Let i = 1, 2.
(1) By definition of a strong parapolar space, a symplecton Ti is convex in Γi, so

any geodesic in Γi between points of Ti is contained in Ti.
(2) Moreover, any geodesic in Γi − Si between points at distance 2 is a geodesic

in Γi and the same holds if we replace Γi by Ti. Combining this with the previous
observation, we find that the 2-convex closure in Ti−Si of a set of points equals the
2-convex closure of that set of points in Γi − Si.

Let Γi ∈ PP with subspace Si (i = 1, 2) and let ε : Γ1 − S1 −→ Γ2 − S2 be some
isomorphism. Suppose T1 ∈ T with T1 ∩ (Γ1 − S1) 6= ∅.

By assumption, if T1 has rank 2, then the lines have at least 4 points and if it
is of rank at least 3, then it is not isomorphic to O7(2) or O+

6 (2). Therefore, by
Theorem 5.1 applied to the polar space T1, the geometry T1 − S1 is the 2-convex
closure of any two of its points. By observation (2), this is true also if we consider
the 2-convex closure in Γ1−S1 instead of in T1−S1. Let x, y be points at distance 2
in T1−S1. Such points exist since T1−S1 is non-degenerate by Lemma 4.15. Then,
xε, yε are points at distance 2 in Γ2 − S2. Hence, they are also at distance 2 in Γ2.
By (IL), there is a symplecton T2 ∈ T of Γ2 containing xε and yε. By observation
(1), the points xε and yε are at distance 2 in T2−S2. Now by observation (2), T2−S2

is 2-convex closed in Γ2 − S2. Therefore, since ε is an isomorphism, we find that
(T1 − S1)ε ⊆ T2 − S2. However, using ε−1 we also find that (T2 − S2)ε

−1 ⊆ T1 − S1

and so (T1 − S1)ε = T2 − S2. Thus (T) is satisfied. �
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