The generating rank of the symplectic line-grassmannian

Rieuwert J. Blok
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027 USA
blokr@member.ams.org

October 28, 2003

Key Words: symplectic geometry, grassmannian, generating rank,

AMS subject classification (2000): Primary 51E24; Secondary 51A50, 51A45.

Proposed running head:

Symplectic line-grassmannians

Send proofs to:

Rieuwert J. Blok Department of Mathematics Michigan State University East Lansing, MI 48824-1027

> Tel.: 517-353-0693 FAX: 517-432-1562

Email: blokr@member.ams.org

Abstract

We prove that the grassmannian of lines of the polar space associated to $\operatorname{Sp}_{2n}(\mathbb{F})$ has generating rank $2n^2-n-1$ when $\operatorname{Char}(\mathbb{F})\neq 2$.

1 Introduction

In Cooperstein [4] the author determines the generating rank of the long-root geometries associated to a classical group over a prime field. The case of arbitrary fields for these geometries is first studied in Blok and Pasini [2] who give sharp bounds on these ranks. In addition they prove that the line-grassmannian of the symplectic polar space associated to the group $\operatorname{Sp}_{2n}(\mathbb{F})$, which is not the long-root geometry of that group, over a prime field of characteristic not 2 has generating rank $2n^2 - n - 1$. The bounds given by Blok and Pasini still involve the field, namely its degree over the prime field. Our result is the following.

Theorem 1 The line-grassmannian of the polar space associated to $\operatorname{Sp}_{2n}(\mathbb{F})$ has generating rank $2n^2 - n - 1$ if \mathbb{F} is a field with $\operatorname{Char}(\mathbb{F}) \neq 2$.

2 Preliminaries

A point-line geometry is a pair $\Gamma = (\mathcal{P}, \mathcal{L})$ where \mathcal{P} is a set whose elements are called 'points' and \mathcal{L} is a collection of subsets of \mathcal{P} called 'lines' with the property that any two points belong to at most one line. If \mathcal{P} and \mathcal{L} are not mentioned explicitly, the sets of points and lines of a point-line geometry Γ are denoted $\mathcal{P}(\Gamma)$ and $\mathcal{L}(\Gamma)$.

A subspace of Γ is a subset $X \subseteq \mathcal{P}$ such that any line containing at least two points of X entirely belongs to X. A hyperplane of Γ is a subspace that meets every line.

The span of a set $S \subseteq \mathcal{P}$ is the smallest subspace containing S; it is the intersection of all subspaces containing S and is denoted by $\langle S \rangle_{\Gamma}$. We say that S is a generating set (or spanning set) for Γ if $\langle S \rangle_{\Gamma} = \mathcal{P}$.

For a vector space W over some field \mathbb{F} , the *projective geometry* associated to W is the point-line geometry $\mathbb{P}(W) = (\mathcal{P}(W), \mathcal{L}(W))$ whose points and lines are the 1-spaces of W and the sets of 1-spaces contained in some 2-space.

A projective embedding of a point-line geometry $\Gamma = (\mathcal{P}, \mathcal{L})$ is a pair (ϵ, W) , where ϵ is an injective map $\mathcal{P} \stackrel{\epsilon}{\longrightarrow} \mathcal{P}(W)$ that sends every line of \mathcal{L} onto a line of $\mathcal{L}(W)$, and with the property that

$$\langle \epsilon(\mathcal{P}) \rangle_{\mathbb{P}(W)} = \mathcal{P}(W).$$

The dimension of the embedding is the dimension of the vector space W. It is rather easy to verify that for any generating set S and any embedding (ϵ, W) we have

$$\dim(W) \leq |S|$$
.

In case of equality S has minimal size and we then call |S| the generating rank of Γ . At the same time then W provides the largest embedding for Γ .

We briefly describe the particular geometries we will discuss in this paper. Let V be a vector space over some field \mathbb{F} . The *projective line-grassmannian* associated to V is the point-line geometry Gr(V,2) whose points are the 2-spaces of V and whose lines are the sets of lines l such that $p \subseteq l \subseteq u$ for some 1-space p and 3-space u.

Now suppose that V has dimension 2n and is endowed with a non-degenerate symplectic form (\cdot, \cdot) . A subspace U of V is called $totally\ isotropic\ (t.i.)$ with respect to the form (\cdot, \cdot) if (u, v) = 0 for any two vectors $u, v \in U$. The $symplectic\ polar\ space$ is the point-line geometry Π whose points are the t.i. 1-spaces of V and whose lines are the sets of t.i. 1-spaces contained in some t.i. 2-space. We sometimes call t.i. 3-spaces planes.

The symplectic line-grassmannian is the point-line geometry Λ whose points are the t.i. 2-spaces and whose lines are the sets of t.i. 2-spaces l such that $p \subseteq l \subseteq u$ for some t.i. 1-space p and t.i. 3-space u. We often identify the line with the pair (p,u). We will call the points and lines of Λ Points and Lines to distinguish them from the points and lines of Π .

3 Proof of Theorem 1

We first recall a result on the generating rank of Π and then define our minimal generating set for Λ . Both are related to the apartments of Π .

Let $\mathbb{E} = \{e_i \mid i = 1, 2, ..., 2n\}$ be a hyperbolic basis for V, i.e. we have $(e_i, e_j) = \delta_{n+i,j}$ where δ is the Kronecker delta. The apartment $\mathcal{A}(\mathbb{E})$ corresponding to \mathbb{E} is the collection of t.i. subspaces of V whose basis is a subset of \mathbb{E} . For $I, J \subseteq [n]$, introduce the following notation

$$E_{I,J} = \langle e_i, e_{n+j} \mid i \in I, j \in J \rangle_V.$$

Then $E_{I,J}$ is t.i. if and only if $I \cap J = \emptyset$. In fact

$$\mathcal{A}(\mathbb{E}) = \{ E_{I,J} \mid I, J \subseteq [n], I \cap J = \emptyset \}.$$

In the sequel we will drop \mathbb{E} from the notation if no confusion can arise.

Theorem 3.1 (Blok and Brouwer [1], Cooperstein and Shult [3]) The generating rank of the polar space associated to $\operatorname{Sp}_{2n}(\mathbb{F})$ is 2n if $\operatorname{Char}(\mathbb{F}) \neq 2$.

The minimal generating set exhibited in both papers is simply the set of points in an apartment. Note that the conclusion of the theorem is false if \mathbb{F} has even characteristic.

Our minimal generating set S for the symplectic line-grassmannian Λ is defined as follows.

Let e be a point of Π contained in $E_{I,\emptyset}$ but not in $E_{J,\emptyset}$ for any $J \subset I$. Then S is the collection of lines of A, together with any n-1 lines on e that span a t.i. n-space meeting $E_{I,\emptyset}$ only in e.

More explicitly, let $e = e_1 + e_2 + \cdots + e_n$. Then, for S take

$$S = \{ \langle e_i, e_i \rangle_V \mid 1 \le i < j \le 2n, n + i \ne j \} \cup \{ \langle e, e_{n+i+1} - e_{n+i} \rangle_V \mid 1 \le i < n \}.$$

Note that S is a set of $2n^2 - n - 1$ t.i. 2-spaces.

The first step in proving Theorem 1 is to show that Λ has a projective embedding of the right dimension. The following result is well-known (for a generalization see e.g. Shult [6]).

Lemma 3.2 The line-grassmannian of the polar space associated to $\operatorname{Sp}_{2n}(\mathbb{F})$ (any characteristic) has a projective embedding of dimension $2n^2-n-1$.

Proof: The embedding is afforded by a hyperplane in the exterior square $\wedge^2 V$ of the vector space V underlying the polar space. The hyperplane corresponds to the symplectic form for which all embedded polar lines are isotropic.

Let us make this more explicit. It is well-known and easy to verify that the projective line-grassmannian Gr(V, 2) has a projective embedding $(\varphi, \wedge^2 V)$

$$\langle x, y \rangle_V \mapsto \langle x \wedge y \rangle_{\wedge^2 V}.$$

By definition of $\wedge^2 V$, the φ -image of Gr(V,2) spans $\mathbb{P}(\wedge^2 V)$.

The embedding φ restricts to an embedding of the symplectic line grassmannian Λ into some hyperplane of $\wedge^2 V$. The vector space $\wedge^2 V$ has a basis $\{e_i \wedge e_j \mid 1 \leq i < j \leq 2n\}$. Suppose $x = \sum_{i=1}^{2n} x_i e_i$ and $y = \sum_{i=1}^{2n} y_i e_i$. Then

$$x \wedge y = \sum_{1 \le i < j \le 2n} (x_i y_j - x_j y_i) e_i \wedge e_j.$$

Now our symplectic form looks like

$$(x,y) = \sum_{i=1}^{n} (x_i y_{n+i} - x_{n+i} y_i).$$

Hence a 2-space of V is t.i. if and only if its φ -image belongs to the hyperplane

$$H = \{ \sum_{1 \le i \le j \le 2n} u_{i,j} e_i \wedge e_j \mid \sum_{i=1}^n u_{i,n+i} = 0 \}.$$

We only have to show that $\langle \varphi(\Lambda) \rangle_H = H$. This is true because the images of the elements in S are linearly independent.

Thus (φ, H) is a projective embedding for Λ of dimension $2n^2 - n - 1$.

For the moment let $S \subseteq \mathcal{P}(\Lambda)$ be an arbitrary set of Points. A point p of Π is called S-full whenever all lines on p are contained in $\langle S \rangle_{\Lambda}$. The following lemma is essentially proved in Blok and Pasini [2, Lemma 5.1], but we will prove it here for the reader's convenience.

We will denote the orthogonality relation between subspaces of V with respect to the symplectic form by \bot . Two subspaces X and Y of V with $\dim(X) \le \dim(Y)$ are called *opposite* if $\dim(X^{\bot} \cap Y) = \dim(Y) - \dim(X)$.

Lemma 3.3 Suppose that a line l contains two S-full points.

- (a) If s is S-full and r is the unique point on l collinear to s, then r is S-full.
- (b) In particular, if there exists a line m opposite to l all points of which are S-full, then all points in l are S-full.

Proof: Suppose that p and q are S-full points on l and that s is an S-full point on m. Let r be the point $s^{\perp} \cap l$.

The subgeometry Λ_r of Λ consisting of lines and planes on r is isomorphic to a symplectic polar space of type $\operatorname{Sp}_{2(n-1)}(\mathbb{F})$.

The set H of lines in l^{\perp} containing r forms a hyperplane of Λ_r . Now H is a maximal subspace of Λ_r and so together with the line rs, which doesn't belong to H, it generates Λ_r . Thus in order to show that r is S-full it suffices to show that both H and rs belong to $\langle S \rangle_{\Lambda}$.

Clearly rs belongs to $\langle S \rangle_{\Lambda}$ because s is S-full.

As for H, let k be any line on r contained in l^{\perp} and let u be the plane on l and k. Then, for any point $t \neq r$ on k, the lines tp and tq belong to $\langle S \rangle_{\Lambda}$ (because p and q are S-full) hence so does k, as these three Points lie on the Line (t, u).

We are done. \Box

Proof: (of Theorem 1) We will first prove that the set S defined at the beginning of this section is a generating set for Λ . For n=2 this is easy to verify. For $n\geq 3$ we do this by showing that all points of Π are S-full. In the following 'points', 'lines', and 'planes' refer to points, lines, and planes of Π unless otherwise specified. First we note that, since $\operatorname{Char}(\mathbb{F}) \neq 2$, the points of Π contained in a given apartment span Π by Theorem 3.1. As this also applies to the symplectic polar space of t.i. lines and planes on a given point we get that all points of \mathcal{A} are S-full. In particular, all lines $\langle e_i, e \rangle_V$ are in the span of S. In turn, by the same principle, also e is S-full. Similarly, every point of Π contained in $E_{i,i}$ is S-full, for every $i \in I$.

We now show that every point on every line of \mathcal{A} is S-full. Consider $i < j \in I$. Call $x = E_{\emptyset,i}$, $\hat{x} = E_{i,\emptyset}$, $y = E_{\emptyset,j}$, $\hat{y} = E_{j,\emptyset}$, and let y_0 be any point on $E_{j,j} \setminus \{y, \hat{y}\}$. Denote $xy = E_{\emptyset,\{i,j\}}$ and $\hat{x}\hat{y} = E_{\{i,j\},\emptyset}$.

Note that e is not collinear to x or y since it is not contained in $E_{J,\emptyset}$ for any proper subset $J \subseteq I$. Thus by Lemma 3.3 with l = xy and s = e we see that there is a point $z_0 \in xy \setminus \{x,y\}$ that is S-full.

Now each point x' on $E_{i,i} \setminus \{x\}$ lies on a line with y_0 which is opposite to xy. Let z' be the unique point on $x'y_0$ collinear to z_0 . Then by Lemma 3.3 with $l = x'y_0$ and $s = z_0$, since x', y_0 , and z_0 are S-full, also z' is S-full. For x' = x we set z' = x which is also S-full.

Let $H = \{z' \mid x' \in E_{i,i}\}$. Clearly $H = \{z_0, y_0\}^{\perp} \cap E_{\{i,j\},\{i,j\}}$ is a hyperbolic line. Note that for all $x' \in E_{i,i} \setminus \{\hat{x}\}$ the line $x'y_0$ is opposite to $\hat{x}\hat{y}$. For each $z' \in H$ let \hat{z} be the unique point on $\hat{x}\hat{y}$ collinear to z'. Again by Lemma 3.3 with $l = \hat{x}\hat{y}$ and s = z' we find that \hat{z} is S-full. For $x' = \hat{x}$ the unique point on $\hat{x}\hat{y}$ collinear to z' is $\hat{z} = \hat{x}$, which is also S-full. The hyperbolic line H is opposite to $\hat{x}\hat{y}$ in the sense that $H \cap \hat{x}\hat{y} = \emptyset$ and $H^{\perp} \cap \hat{x}\hat{y} = \emptyset$. This is because $z' \neq x'$ except if x' = x and because if x' = x, then $z'^{\perp} \cap \hat{x}\hat{y} = \hat{x}$. Therefore the map $z' \mapsto \hat{z}$ is a bijection between the points of H and the points of $\hat{x}\hat{y}$. Hence, all points of $\hat{x}\hat{y} = E_{\{i,j\},\emptyset}$ are S-full.

Now by Lemma 3.3 applied with l = xy and $m = \hat{x}\hat{y}$ we find that all points of $xy = E_{\emptyset,\{ij\}}$ are S-full.

By the same token, all points contained in any line of A are S-full.

As the points of \mathcal{A} span Π by Theorem 3.1, and every line of Π is opposite to some line of \mathcal{A} , using Lemma 3.3 repeatedly, we find that in fact all points of Π are S-full. Thus S is a generating set for Λ of size $2n^2 - n - 1$.

Since Λ has a natural embedding of dimension $2n^2 - n - 1$ by Lemma 3.2, it follows that its generating rank is $2n^2 - n - 1$.

Note An alternative generating set for the symplectic line-grassmannian was found by Cooperstein [5]. He constructs a generating set for n = 2, 3 and then inductively defines one for all n > 3. The main ingredient is the observation that, given a subspace U of V of dimension 2(n-1) on which the symplectic form is non-degenerate, the set of lines meeting U forms a geometric hyperplane of the symplectic line-grassmannian. Again, this construction only works in odd characteristic since it also uses Theorem 3.1.

By Lemma 3.2 the generating rank in any characteristic is at least $2n^2 - n - 1$. Note that for n = 2 this is the actual generating rank, even in even characteristic.

Acknowledgement The author would like to express his gratitude to B. Cooperstein for his comments on the manuscript.

References

- [1] R. J. Blok and A. E. Brouwer, Spanning point-line geometries in buildings of spherical type, *J. Geometry* **62** (1998), 26–35.
- [2] R. J. Blok and A. Pasini, Point-line geometries with a generating set that depends on the underlying field, in *Finite Geometries*, Proceedings of the Fourth Isle of Thorns Conference (2000), 1–25.
- [3] B. N. Cooperstein and E. E. Shult, Frames and bases of Lie incidence geometries, *J. Geometry* **60** (1997), 17–46.
- [4] B. N. Cooperstein, Generating long root subgroup geometries of classical groups over finite prime fields, *Bull. Belg. Math. Soc.* **5** (1998), 531–548.
- [5] B. N. Cooperstein, personal communication.
- [6] E. E. Shult, Geometric Hyperplanes of Embeddable Grassmannians, *J. Algebra* **145** (1992), 55-82.