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Abstract

We prove that the grassmannian of lines of the polar space associated to Sp2n(F)
has generating rank 2n2 − n− 1 when Char(F) 6= 2.



1 Introduction

In Cooperstein [4] the author determines the generating rank of the long-root geome-
tries associated to a classical group over a prime field. The case of arbitrary fields
for these geometries is first studied in Blok and Pasini [2] who give sharp bounds
on these ranks. In addition they prove that the line-grassmannian of the symplectic
polar space associated to the group Sp2n(F), which is not the long-root geometry of
that group, over a prime field of characteristic not 2 has generating rank 2n2−n−1.
The bounds given by Blok and Pasini still involve the field, namely its degree over
the prime field. Our result is the following.

Theorem 1 The line-grassmannian of the polar space associated to Sp2n(F) has
generating rank 2n2 − n− 1 if F is a field with Char(F) 6= 2.

2 Preliminaries

A point-line geometry is a pair Γ = (P ,L) where P is a set whose elements are called
‘points’ and L is a collection of subsets of P called ‘lines’ with the property that
any two points belong to at most one line. If P and L are not mentioned explicitly,
the sets of points and lines of a point-line geometry Γ are denoted P(Γ) and L(Γ).

A subspace of Γ is a subset X ⊆ P such that any line containing at least two
points of X entirely belongs to X. A hyperplane of Γ is a subspace that meets every
line.

The span of a set S ⊆ P is the smallest subspace containing S; it is the inter-
section of all subspaces containing S and is denoted by 〈S〉Γ. We say that S is a
generating set (or spanning set) for Γ if 〈S〉Γ = P .

For a vector space W over some field F, the projective geometry associated to W
is the point-line geometry P(W ) = (P(W ),L(W )) whose points and lines are the
1-spaces of W and the sets of 1-spaces contained in some 2-space.

A projective embedding of a point-line geometry Γ = (P ,L) is a pair (ε,W ),
where ε is an injective map P ε−→ P(W ) that sends every line of L onto a line of
L(W ), and with the property that

〈ε(P)〉P(W ) = P(W ).

The dimension of the embedding is the dimension of the vector space W . It is rather
easy to verify that for any generating set S and any embedding (ε,W ) we have

dim(W ) ≤ |S|.

In case of equality S has minimal size and we then call |S| the generating rank of Γ.
At the same time then W provides the largest embedding for Γ.
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We briefly describe the particular geometries we will discuss in this paper. Let V
be a vector space over some field F. The projective line-grassmannian associated to
V is the point-line geometry Gr(V, 2) whose points are the 2-spaces of V and whose
lines are the sets of lines l such that p ⊆ l ⊆ u for some 1-space p and 3-space u.

Now suppose that V has dimension 2n and is endowed with a non-degenerate
symplectic form (·, ·). A subspace U of V is called totally isotropic (t.i.) with respect
to the form (·, ·) if (u, v) = 0 for any two vectors u, v ∈ U . The symplectic polar
space is the point-line geometry Π whose points are the t.i. 1-spaces of V and whose
lines are the sets of t.i. 1-spaces contained in some t.i. 2-space. We sometimes call
t.i. 3-spaces planes.

The symplectic line-grassmannian is the point-line geometry Λ whose points are
the t.i. 2-spaces and whose lines are the sets of t.i. 2-spaces l such that p ⊆ l ⊆ u
for some t.i. 1-space p and t.i. 3-space u. We often identify the line with the pair
(p, u). We will call the points and lines of Λ Points and Lines to distinguish them
from the points and lines of Π.

3 Proof of Theorem 1

We first recall a result on the generating rank of Π and then define our minimal
generating set for Λ. Both are related to the apartments of Π.

Let E = {ei | i = 1, 2, . . . , 2n} be a hyperbolic basis for V , i.e. we have (ei, ej) =
δn+i,j where δ is the Kronecker delta. The apartment A(E) corresponding to E is
the collection of t.i. subspaces of V whose basis is a subset of E. For I, J ⊆ [n],
introduce the following notation

EI,J = 〈ei, en+j | i ∈ I, j ∈ J〉V .

Then EI,J is t.i. if and only if I ∩ J = ∅. In fact

A(E) = {EI,J | I, J ⊆ [n], I ∩ J = ∅}.

In the sequel we will drop E from the notation if no confusion can arise.

Theorem 3.1 (Blok and Brouwer [1], Cooperstein and Shult [3]) The generating
rank of the polar space associated to Sp2n(F) is 2n if Char(F) 6= 2.

The minimal generating set exhibited in both papers is simply the set of points
in an apartment. Note that the conclusion of the theorem is false if F has even
characteristic.

Our minimal generating set S for the symplectic line-grassmannian Λ is defined
as follows.

2



Let e be a point of Π contained in EI,∅ but not in EJ,∅ for any J ⊂ I. Then S
is the collection of lines of A, together with any n − 1 lines on e that span a t.i.
n-space meeting EI,∅ only in e.

More explicitly, let e = e1 + e2 + · · ·+ en. Then, for S take

S = {〈ei, ej〉V | 1 ≤ i < j ≤ 2n, n+ i 6= j} ∪ {〈e, en+i+1 − en+i〉V | 1 ≤ i < n}.

Note that S is a set of 2n2 − n− 1 t.i. 2-spaces.
The first step in proving Theorem 1 is to show that Λ has a projective embedding

of the right dimension. The following result is well-known (for a generalization see
e.g. Shult [6]).

Lemma 3.2 The line-grassmannian of the polar space associated to Sp2n(F) (any
characteristic) has a projective embedding of dimension 2n2 − n− 1.

Proof : The embedding is afforded by a hyperplane in the exterior square ∧2V of
the vector space V underlying the polar space. The hyperplane corresponds to the
symplectic form for which all embedded polar lines are isotropic.

Let us make this more explicit. It is well-known and easy to verify that the
projective line-grassmannian Gr(V, 2) has a projective embedding (ϕ,∧2V )

〈x, y〉V 7→ 〈x ∧ y〉∧2V .

By definition of ∧2V , the ϕ-image of Gr(V, 2) spans P(∧2V ).
The embedding ϕ restricts to an embedding of the symplectic line grassmannian

Λ into some hyperplane of ∧2V . The vector space ∧2V has a basis {ei∧ ej | 1 ≤ i <
j ≤ 2n}. Suppose x =

∑2n
i=1 xiei and y =

∑2n
i=1 yiei. Then

x ∧ y =
∑

1≤i<j≤2n

(xiyj − xjyi)ei ∧ ej.

Now our symplectic form looks like

(x, y) =
n∑
i=1

(xiyn+i − xn+iyi).

Hence a 2-space of V is t.i. if and only if its ϕ-image belongs to the hyperplane

H = {
∑

1≤i<j≤2n

ui,jei ∧ ej |
n∑
i=1

ui,n+i = 0}.

We only have to show that 〈ϕ(Λ)〉H = H. This is true because the images of the
elements in S are linearly independent.
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Thus (ϕ,H) is a projective embedding for Λ of dimension 2n2 − n− 1. �

For the moment let S ⊆ P(Λ) be an arbitrary set of Points. A point p of Π is
called S-full whenever all lines on p are contained in 〈S〉Λ. The following lemma is
essentially proved in Blok and Pasini [2, Lemma 5.1], but we will prove it here for
the reader’s convenience.

We will denote the orthogonality relation between subspaces of V with respect
to the symplectic form by ⊥. Two subspaces X and Y of V with dim(X) ≤ dim(Y )
are called opposite if dim(X⊥ ∩ Y ) = dim(Y )− dim(X).

Lemma 3.3 Suppose that a line l contains two S-full points.

(a) If s is S-full and r is the unique point on l collinear to s, then r is S-full.

(b) In particular, if there exists a line m opposite to l all points of which are S-full,
then all points in l are S-full.

Proof : Suppose that p and q are S-full points on l and that s is an S-full point
on m. Let r be the point s⊥ ∩ l.

The subgeometry Λr of Λ consisting of lines and planes on r is isomorphic to a
symplectic polar space of type Sp2(n−1)(F).

The set H of lines in l⊥ containing r forms a hyperplane of Λr. Now H is a
maximal subspace of Λr and so together with the line rs, which doesn’t belong to
H, it generates Λr. Thus in order to show that r is S-full it suffices to show that
both H and rs belong to 〈S〉Λ.

Clearly rs belongs to 〈S〉Λ because s is S-full.
As for H, let k be any line on r contained in l⊥ and let u be the plane on l and

k. Then, for any point t 6= r on k, the lines tp and tq belong to 〈S〉Λ (because p and
q are S-full) hence so does k, as these three Points lie on the Line (t, u).

We are done. �

Proof : (of Theorem 1) We will first prove that the set S defined at the beginning
of this section is a generating set for Λ. For n = 2 this is easy to verify. For n ≥ 3 we
do this by showing that all points of Π are S-full. In the following ‘points’, ‘lines’,
and ‘planes’ refer to points, lines, and planes of Π unless otherwise specified. First
we note that, since Char(F) 6= 2, the points of Π contained in a given apartment
span Π by Theorem 3.1. As this also applies to the symplectic polar space of t.i.
lines and planes on a given point we get that all points of A are S-full. In particular,
all lines 〈ei, e〉V are in the span of S. In turn, by the same principle, also e is S-full.
Similarly, every point of Π contained in Ei,i is S-full, for every i ∈ I.

We now show that every point on every line of A is S-full. Consider i < j ∈ I.
Call x = E∅,i, x̂ = Ei,∅, y = E∅,j, ŷ = Ej,∅, and let y0 be any point on Ej,j \ {y, ŷ}.
Denote xy = E∅,{i,j} and x̂ŷ = E{i,j},∅.
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Note that e is not collinear to x or y since it is not contained in EJ,∅ for any
proper subset J ⊆ I. Thus by Lemma 3.3 with l = xy and s = e we see that there
is a point z0 ∈ xy \ {x, y} that is S-full.

Now each point x′ on Ei,i \ {x} lies on a line with y0 which is opposite to xy.
Let z′ be the unique point on x′y0 collinear to z0. Then by Lemma 3.3 with l = x′y0

and s = z0, since x′, y0, and z0 are S-full, also z′ is S-full. For x′ = x we set z′ = x
which is also S-full.

Let H = {z′ | x′ ∈ Ei,i}. Clearly H = {z0, y0}⊥ ∩ E{i,j},{i,j} is a hyperbolic line.
Note that for all x′ ∈ Ei,i \ {x̂} the line x′y0 is opposite to x̂ŷ. For each z′ ∈ H let
ẑ be the unique point on x̂ŷ collinear to z′. Again by Lemma 3.3 with l = x̂ŷ and
s = z′ we find that ẑ is S-full. For x′ = x̂ the unique point on x̂ŷ collinear to z′

is ẑ = x̂, which is also S-full. The hyperbolic line H is opposite to x̂ŷ in the sense
that H ∩ x̂ŷ = ∅ and H⊥ ∩ x̂ŷ = ∅. This is because z′ 6= x′ except if x′ = x and
because if x′ = x, then z′⊥ ∩ x̂ŷ = ŷ whereas if x′ = x̂, then z′⊥ ∩ x̂ŷ = x̂. Therefore
the map z′ 7→ ẑ is a bijection between the points of H and the points of x̂ŷ. Hence,
all points of x̂ŷ = E{i,j},∅ are S-full.

Now by Lemma 3.3 applied with l = xy and m = x̂ŷ we find that all points of
xy = E∅,{ij} are S-full.

By the same token, all points contained in any line of A are S-full.
As the points of A span Π by Theorem 3.1, and every line of Π is opposite to

some line of A, using Lemma 3.3 repeatedly, we find that in fact all points of Π are
S-full. Thus S is a generating set for Λ of size 2n2 − n− 1.

Since Λ has a natural embedding of dimension 2n2 − n − 1 by Lemma 3.2, it
follows that its generating rank is 2n2 − n− 1. �

Note An alternative generating set for the symplectic line-grassmannian was found
by Cooperstein [5]. He constructs a generating set for n = 2, 3 and then inductively
defines one for all n > 3. The main ingredient is the observation that, given a sub-
space U of V of dimension 2(n−1) on which the symplectic form is non-degenerate,
the set of lines meeting U forms a geometric hyperplane of the symplectic line-
grassmannian. Again, this construction only works in odd characteristic since it
also uses Theorem 3.1.

By Lemma 3.2 the generating rank in any characteristic is at least 2n2 − n− 1.
Note that for n = 2 this is the actual generating rank, even in even characteristic.
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