Reference List for Math 669, ``Approximation Theory''

Prof. Gordon Wade MSC 432 x2-0240


Note All more most of these items are on reserve in the Science Library, under this course.

  1. [Atkinson] Kendall E. Atkinson, An Introduction to Numerical Analysis, Wiley, 1989.
  2. [CQ] C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp. Vol. 38, (1982), pp. 67--86.
  3. [CHQZ] C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang, Spectral Methods in Fluid Dynamics, Springer, 1987.
  4. [Carothers2] Carothers, N., Real Analysis, Cambridege, to appear. (Preprint available during the 1996-'97 schoolyear in the Science Library, on Reserve for Math 665 and Math 666).
  5. [Carothers] A Short Course on Approximation, notes.
  6. [Cheney] Cheney, E.W., An Introduction to Approximation Theory, Chelsea, 1982.
  7. [Davis] Davis, P.J., Interpolation and Approximation, Blaisdell, 1963, and Dover, 1975.
  8. [deboor] deBoor, C., A practical Guide to Splines, Springer, 1978.
  9. [Kreyszig] Kreyszig, E., Introductory functional analysis with applications, Wiley, 1978.
  10. [Jackson] Jackson, Dunham, Fourier Series and Orthogonal Polynomials, MAA, 1941.
  11. [Nurnberger] Nurnberger, Gunther, Approximation by Spline Functions, Springer, 1989.
  12. [Prenter] Prenter, P. M., Splines and Variational Methods, Wiley, 1975
  13. [Powell] Powell, M.J.D., Approximation Theory and Methods, Cambridge, 1981.
  14. [Quarteroni] Quarteroni, A., Numerical approximation of partial differential equations, Springer, 1994.
  15. [Rivlin1], Rivlin, T.J., The Chebyshev Polynomials, Wiley, 1974.
  16. [Rivlin2] Rivlin, T.J., An Introduction to the Approximation of Functions, Dover, 1981
  17. [Rivlin3] Rivlin, T. J., Chebyshev polynomials : from approximation theory to algebra and number theory, Wiley, 1990.
  18. [Schultz] Schultz, Martin H., Spline Analysis, Prentice Hall, 1973.
  19. [SB] Stoer, J. and Bulirsch, R., Introduction to Numerical Analysis, Springer-Verlag, New York, 1993.