We consider convergence of the covolume or finite volume element solution to linear elliptic and parabolic problems. Error estimates and superconvergence results in the L^p norm, $2 \leq p \leq \infty$, are derived. We also show second-order convergence in the L^p norm between the covolume and the corresponding finite element solutions and between their gradients. The main tools used in this article are an extension of the "supercloseness" results in Chou and Li [Math Comp 69(229) (2000), 103–120] to the L^p based spaces, duality arguments, and the discrete Green’s function method. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 463–486, 2003

Keywords: error estimates; covolume methods; finite volume methods; superconvergence; network methods; finite volume element

1. INTRODUCTION

Let Ω be a convex polygonal or smooth domain in \mathbb{R}^2 and consider the elliptic problem

$$Lu := -\nabla \cdot (A \nabla u) = f, \quad \text{in } \Omega,$$

$$u = 0, \quad \text{on } \partial \Omega,$$

where $A := \{a_{ij}(x)\}$, $a_{ij} = a_{ji} \in W^{1,\infty}(\Omega)$ is a uniformly positive definite matrix, i.e., there exists a positive constant $r > 0$ such that

Correspondence to: So-Hsiang Chou, Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403-0221 (e-mail: chou@bgnet.bgsu.edu)
Contract grant sponsor: National Science Foundation; contract grant number: DMS-0074259 (to S.-H.C.)

© 2003 Wiley Periodicals, Inc.
The variational problem associated with (1.1)–(1.2) is to find \(u \in U := H^1_0(\Omega) \) such that

\[
a(u, v) = (f, v) \quad \forall v \in U,
\]

where

\[
a(u, v) = \int_{\Omega} A \nabla u \cdot \nabla v \, dx, \tag{1.5}
\]

\[
(f, v) = \int_{\Omega} f v \, dx. \tag{1.6}
\]

Since one of the main concerns in this article is to derive \(L^p \) error estimates, we make the following two regularity assumptions. The first one concerns the elliptic problem (1.1)–(1.2).

R1. There exists a constant \(r_{\text{max}} > 1 \) such that a solution to problem (1.4) exists and such that

\[
\|u\|_{1,p} \leq C_p \|f\|_{0,p} \quad \forall p \in (1, r_{\text{max}}),
\]

where the constant \(C_p > 0 \) depends only on the domain \(\Omega \) and \(p \). Here \(\| \cdot \|_{s,p} \) is the usual norm of the Sobolev space \(W^{s,p}(\Omega) \).

The second regularity assumption is on the type of problems for which the right side of (1.1) is specialized as a divergence, i.e., \(u \in H^1_0(\Omega) \) satisfies

\[
\mathcal{L} u = \nabla \cdot F. \tag{1.8}
\]

R2. There exists a constant \(\gamma_{\text{max}} > 1 \) such that a solution to problem (1.8) exists and such that

\[
\|u\|_{1,p} \leq C \|F\|_{0,p} \quad \forall p \in (1, \gamma_{\text{max}}),
\]

where the constant \(C \) depends only on the domain \(\Omega \) and \(p \).

For a polygonal domain \(\Omega \),

\[
r_{\text{max}} = \begin{cases} 2 & \text{if } \beta < 2, \\ 2 - \beta & \text{if } \beta \geq 2, \end{cases}
\]

where \(\beta = 1/\alpha, \alpha \pi \) is the largest interior vertex angle of \(\Omega \) (cf. [1]). When \(\Omega \) is a \(C^{1,1} \) domain and \(a_{ij} \in C(\bar{\Omega}) \), one can take \(r_{\text{max}} = \infty \) [2]. On the other hand, under the same assumptions one can take \(\gamma_{\text{max}} = \infty \) as well [3]. For rectangles, one also has \(r_{\text{max}} = \gamma_{\text{max}} = \infty \) and \(\gamma_{\text{max}} > 2 \) for
convex polygonal domains. As one may expect, our L^p estimates statements below will be more concise when both parameters are infinity.

Given a polygonal domain Ω, let $\mathcal{T}_h = \{K_Q\}$ be a regular triangulation of the domain Ω into a union of triangular elements K_Q with barycenter Q (cf. Fig. 1). Here $h := \max h_K$, the maximum of the diameters h_K over all triangles. The nodes of a triangular element are its vertices and the set of all vertices is denoted by \mathcal{N}_h. Associated with the primal partition \mathcal{T}_h we define its dual partition \mathcal{T}_h^* of Ω as follows. Let P_0 be an interior node and $P_i, i = 1, \ldots, 6$, be its adjacent nodes, and $M_i := M_{0i}$ the midpoint of P_0P_i. Connect successively the points $M_1, Q_1, M_2, Q_2, \ldots, M_6, Q_6, M_1$ to obtain the dual polygonal element $K^{*P_0}_i$. Its nodes are defined to be $Q_i, i = 1, 6$, and the set of all nodes are denoted by $\mathcal{N}^{*P_0}_h$. The dual element $K^{*P_0}_i$ based at a typical boundary node P_2 is $M_{12}Q_1M_{23}Q_2M_{3}P_2$. Let $\mathcal{N}^\circ_h := \mathcal{N}_h - \partial \Omega$, the set of all interior nodes in \mathcal{T}_h, and let S_Q and S^*_Q denote, respectively, the areas of triangle K_Q and polygon $K^{*P_0}_Q$. Throughout the article we shall assume the partitions to be quasi-uniform: There exist two positive constants C_1 and C_2 independent of h such that

$$C_1 h^2 \leq S_Q \leq C_2 h^2, \quad \forall Q \in \mathcal{N}^\circ_h,$$

(1.10)

$$C_1 h^2 \leq S^*_Q \leq C_2 h^2, \quad \forall P_0 \in \mathcal{N}_h.$$

(1.11)

Corresponding to \mathcal{T}_h we define the trial function space $U_h \subset H^1_0(\Omega)$ as the space of continuous functions on the closure of Ω, which vanish on $\partial \Omega$ and are linear on each triangle $K_Q \in \mathcal{T}_h$. Let $\Pi_h : U \cap C(\Omega) \rightarrow U_h$ be the usual linear interpolation operator, and thus

$$|u - \Pi_h u|_{m,p} \leq Ch^{|\sigma|} |u|_{r,p}, \quad 0 \leq m \leq r \leq 2,$$

$$0 \leq \sigma \leq r - m, \quad 1 \leq p \leq \infty.$$
Throughout the article C will denote a generic constant independent of h and can have different values in different places. We use $\| \cdot \|_{m}$ and $| \cdot |_{m}$, respectively, for the norm $\| \cdot \|_{m,p}$ and the seminorm of $W^{m,p}(\Omega)$ when $p = 2$.

For a convex domain Ω with a smooth boundary (cf. Fig. 1), we triangulate it as before and call the resulting polygonal domain Ω_h. It is further required that the vertices which lie on $\partial \Omega_h$ also lie on $\partial \Omega$. A trial function in U_h is now defined to be continuous piecewise linear on Ω_h and zero outside Ω_h. Since the distance
\[
\text{dist}(\partial \Omega_h, \partial \Omega) \leq C h^2,
\]
all the approximation properties above still hold for the smooth domain case [4, 5].

The test function space $V_h \subset L^2(\Omega)$ associated with the dual partition \mathcal{T}_h^* is defined as the set of all piecewise constants. More specifically, let χ_{K_0} be the characteristic function of the set K_0^*, we have for $v_h \in V_h$
\[
v_h = \sum_{P_0 \in \mathcal{K}_h^*} v_h(P_0) \chi_{P_0}.
\]
Define the transfer operator $\Pi_h^*: U_h \rightarrow V_h$ connecting the trial and test spaces as
\[
\Pi_h^* w := \sum_{P_0 \in \mathcal{K}_h^*} w_h(P_0) \chi_{P_0}.
\]
Obviously, Π_h^* can be extended to $H^1_0(\Omega) \cap C(\overline{\Omega})$. By the usual interpolation theory it holds that
\[
\| w - \Pi_h^* w \|_{0,p} \leq C h^\beta |w|_{s,p},
\]
where $0 \leq \beta \leq s \leq 1, \quad 1 \leq p \leq \infty$.

The approximate problem we consider is: Find $u_h \in U_h$ such that
\[
a^*(u_h, v_h) = (f, v_h) \quad \forall v_h \in V_h,
\]
where
\[
a^*(u_h, v_h) := \sum_{P_0 \in \mathcal{K}_h^*} v_h(P_0) a^*(u_h, \chi_{P_0}),
\]
\[
a^*(u_h, \chi_{P_0}) := - \int_{\partial K_0^*} (A \nabla u_h) \cdot \mathbf{n} ds,
\]
where \mathbf{n} is the outward unit normal to ∂K_0^*, and $a^*(\cdot, \cdot, \cdot)$ is bilinear by construction.

Let $K_Q = \Delta P_1 P_2 P_3 \in \mathcal{T}_h$, and let M_l be midpoint of $P_{l+1} P_{l+2}, \quad 1 \leq l \leq 3$ (mod 3). While (1.15) reflects a conservation law, it is more convenient for the error analysis to write it as
\[
a^*(u_h, v_h) = \sum_{K \in \mathcal{T}_h} I_K(u_h, v_h),
\]

where

\[
I_K(u_h, v_h) = - \sum_{l=1}^{3} \int_{\partial K \cap K'} A \nabla u_h \cdot \mathbf{n} ds \cdot v_l = \sum_{l=1}^{3} \int_{K_l} A \nabla u_h \cdot \mathbf{n} ds \cdot (v_{l+2} - v_{l+1}).
\] (1.18)

Here \(v_l = v_h(P_l) \) and \(\mathbf{n} \) is the unit normal vector pointing to the right as one walks along \(\overline{M_lQ} \) in \(K_{Pl} \cap K \).

By (1.1) and (1.14) we have the “orthogonality” property

\[
a^*(u - u_h, v_h) = 0, \quad v_h \in V_h
\] (1.19)

Define the Ritz projection operator \(R_h : H^1_0(\Omega) \to U_h \), so that

\[
a(R_h w - w, \chi) = 0, \quad \chi \in U_h.
\] (1.20)

Let us relate our work to the existing literature. The basic idea of the finite volume method for general elliptic problems is to use the divergence theorem on the elliptic operator \(\mathcal{L} \) of (1.1) to convert the double integral into a boundary integral as in (1.16). The idea is old and the resulting method comes under a variety of names, e.g., the generalized difference method [6] in the early 1980s, the box method [7–10], the covolume method [11–16], and the so-called finite volume element methods [10, 17–20], among others. The term “covolume” can either mean complementary or control volume, and the term “finite volume element” seems to be coined by S. McCormick. Reference [6] contains a bulk of contributions in the early years, and the article of Bank-Rose [7] is pivotal in calling attention to the merits of variational approach in finite volume methods. Cai et al. [17, 18] give the first finite volume element analysis to some special tensor coefficient cases. The first unified approach to the analysis of finite volume element or covolume methods applied to the general anisotropic case on polygonal or smooth domains is given by Chou and Li [5]. In addition to optimal estimates in \(H^1, L^2 \), they also showed how to derive \(W^{1,\infty} \) error estimate. The central idea there is to compare the covolume solution with the corresponding finite element solution via an extra-power-of-\(h \) lemma. In this article we further explore and generalize that idea to develop \(L^p \) estimates, \(2 \leq p \leq \infty \). (Although of interest in their own right, such estimates are indispensable for nonlinear problems.) To keep the article short, results for linear elliptic and parabolic problems are given in Section 2 and Section 3, respectively. Nonlinear problem results will be given in a follow-up article.

2. ESTIMATES FOR ELLIPTIC PROBLEMS

In this section we first derive a central lemma, as in [5]. This lemma generalizes the one in [5], which shows that an “extra” power of \(h \) is possible when comparing the bilinear forms \(a(\cdot, \cdot) \) and \(a^*(\cdot, \cdot) \) with certain arguments. We then use it to derive convergence rates in \(L^p \) norm for covolume solutions of the elliptic problem. We also show supercloseness between the covolume and finite element solutions.
Lemma 2.1. Let $u_h \in U_h$, $v \in C(\Omega) \cap H^1_0(\Omega)$, $1 \leq p \leq \infty$, $\frac{1}{p} + \frac{1}{p'} = 1$.

(i) If $u \in W^{2,p}(\Omega) \cap H^1_0(\Omega)$ and $v \in W^{1,p'}(\Omega)$, then

$$|a(u - u_h, \Pi_h v) - a^*(u - u_h, \Pi_h^* v)| \leq Ch[|u - u_h|_{1,p} + |u|_{2,p}]v|_{1,p'}.$$ \hspace{1cm} (2.1)

(ii) If $u \in W^{3,p}(\Omega) \cap H^1_0(\Omega)$ and $v \in W^{1,p'}(\Omega)$, then

$$|a(u - u_h, \Pi_h v) - a^*(u - u_h, \Pi_h^* v)| \leq Ch^2[h^{-1}|u - u_h|_{1,p} + |u|_{3,p}]v|_{1,p'}.$$ \hspace{1cm} (2.2)

Proof. We prove the assertions only for polygonal domains. The smooth domain case only requires some additional trivial changes since all the integrals involved in the left side bilinear forms are zero in the skin layer $\Omega - \Omega_h$.

Applying Green’s formula to $a(\cdot, \Pi_h \cdot)$ and $a^*(\cdot, \Pi_h^*)$

$$a(u - u_h, \Pi_h v) = \sum_{K \in \mathcal{K}_h} \int_K [A(x) - \bar{A}]\nabla(u - u_h) \cdot \nabla \Pi_h v dx - \sum_{K} \int_K \nabla \cdot (\bar{A}\nabla u)\Pi_h v dx$$

$$+ \sum_{K} \int_{\partial K} \bar{A}\nabla(u - u_h) \cdot n\Pi_h v ds,$$

where \bar{A} is the local L^2 projection of A on K:

$$\bar{A} = \frac{1}{\text{meas } K} \int_K A(y)dy.$$

$$a^*(u - u_h, \Pi_h^* v) = -\sum_{K \in \mathcal{K}_h} \sum_{l=1}^{3} \int_{\partial K \cap K} A\nabla(u - u_h) \cdot n\Pi_h^* v ds$$

$$= -\sum_{K \in \mathcal{K}_h} \sum_{l=1}^{3} \int_{\partial K \cap K} [A(x) - \bar{A}]\nabla(u - u_h) \cdot n\Pi_h^* v ds - \sum_{K} \int_K \nabla \cdot (\bar{A}\nabla u)\Pi_h^* v dx$$

$$+ \sum_{K} \int_{\partial K} \bar{A}\nabla(u - u_h) \cdot n\Pi_h^* v ds.$$

Thus

$$a(u - u_h, \Pi_h v) - a^*(u - u_h, \Pi_h^* v) = \sum_{i=1}^{4} E_i(u - u_h, v),$$ \hspace{1cm} (2.3)

where
\[E_1(u - u_h, v) = \sum_K \int_K [A(x) - \bar{A}] \nabla (u - u_h) \cdot \nabla \Pi_h v dx, \] (2.4)

\[E_2(u - u_h, v) = \sum_K \sum_{l=1}^3 \int_{\partial K_h \cap K} [A(x) - \bar{A}] \nabla (u - u_h) \cdot n \Pi_h^l v ds, \] (2.5)

\[E_3(u - u_h, v) = -\sum_K \int_K \nabla \cdot (\bar{A} \nabla u)(\Pi_h v - \Pi_h^l v) dx, \] (2.6)

\[E_4(u - u_h, v) = \sum_K \int_{\partial K} \bar{A} \nabla (u - u_h) \cdot n (\Pi_h v - \Pi_h^l v) ds. \] (2.7)

For convenience we will estimate \(E_i \)'s for \(1 < p < \infty \). The \(p = 1 \) or \(p = \infty \) cases involve only minor changes.

By the Hölder inequality,

\[|E_1(u - u_h, v)| \leq Ch \sum_K |u - u_h|_{1,p,K} |\Pi_h v|_{1,p',K} \leq Ch |u - u_h|_{1,p} |v|_{1,p'}. \] (2.8)

By definition, (1.18) and the Hölder inequality

\[|E_2(u - u_h, v)| = \left| \sum_K \sum_{l=1}^3 \int_{M/Q} [A(x) - \bar{A}] \nabla (u - u_h) n ds (v_{l+2} - v_{l+1}) \right| \]
\[\leq Ch^{1 + (1/p)} \sum_K \sum_{l=1}^3 \left(\int_{M/Q} (|\phi_1|^p + |\phi_2|^p) ds \right)^{1/p} |v_{l+2} - v_{l+1}|, \] (2.9)

where

\[\phi_i = \frac{\partial (u - u_h)}{\partial x_i}, \quad i = 1, 2. \] (2.10)

First, on \(K \)

\[|v_{l+2} - v_{l+1}| = \left| \frac{\partial \Pi_h v}{\partial x_1} (x_1(P_{l+2}) - x_1(P_{l+1})) + \frac{\partial \Pi_h v}{\partial x_2} (x_2(P_{l+2}) - x_2(P_{l+1})) \right| \]
\[\leq Ch \left(\left| \frac{\partial \Pi_h v}{\partial x_1} \right| + \left| \frac{\partial \Pi_h v}{\partial x_2} \right| \right) \]
\[\leq C h^{1/p} \left(\left| \frac{\partial \Pi_h v}{\partial x_1} \right|^{p'} + \left| \frac{\partial \Pi_h v}{\partial x_2} \right|^{p'} \right)^{1/p'} \]
\[\leq C h^{1-2/p} \left[\nu \left(\left| \frac{\partial \Pi_h v}{\partial x_1} \right|^{p'} + \left| \frac{\partial \Pi_h v}{\partial x_2} \right|^{p'} \right) \right]^{1/p'} \quad (S_Q \text{ is from } (1.10)) \]

Thus we have
\[|v_{i+2} - v_{i+1}| \leq C h^{1-2/p} |\Pi_h v|_{1,p',K}. \quad (2.11) \]

Next, introduce the usual affine transformation that maps a reference element \(\hat{K} \) to \(K \) with the following correspondences: \(\phi_i \rightarrow \hat{\phi}_i, M_i \rightarrow M_{\hat{i}}, p_i \rightarrow \hat{p}_i, Q \rightarrow \hat{Q}, l = 1, 2, 3. \) Obviously,
\[\int_{M_{\hat{Q}}} |\hat{\phi}_i|^p d\hat{s} \leq C \int_{M_Q} |\phi_i|^p d\hat{s}, \quad i = 1, 2. \quad (2.12) \]

By the Trace Theorem [21], for \(1 \leq p \leq \infty, \)
\[\int_{M_{\hat{Q}}} |\hat{\phi}_i|^p d\hat{s} \leq C \| \hat{\phi}_i \|^p_{0,p,K}. \quad (2.13) \]

By Theorem 3.1.2 of Ciarlet [22],
\[\| \hat{\phi}_i \|_{0,p,K} \leq C h^{-2/p} \| \phi_i \|_{0,p,K}, \]
\[|\hat{\phi}_i|_{1,p,K} \leq C h^{1-2/p} |\phi_i|_{1,p,K}. \]

Thus,
\[\int_{M_{\hat{Q}}} |\hat{\phi}_i|^p d\hat{s} \leq C h^{-2} \| \phi_i \|^p_{0,p,K} + h^{p-2} |\phi_i|^p_{1,p,K} \leq C h^{-2} |u - u_h|^p_{1,p,K} + h^{p-2} |u|^p_{2,p,K}. \quad (2.14) \]

Combining (2.11) and (2.14) with (2.9),
\[|E_2(u - u_h, v)| \leq C h^{1+(1/p')} \sum_{K} h^{1/p} [h^{-2} |u - u_h|^p_{1,p,K} + h^{p-2} |u|^p_{2,p,K}]^{1/p'} h^{1-2/p'} |\Pi_h v|_{1,p',K} \]
\[\leq C h^{2 + 1/p} \sum_{K} [h^{-2/p} |u - u_h|_{1,p,K} + h^{1-2/p} |u|^2_{2,p,K}] h^{1-2/p'} |\Pi_h v|_{1,p',K} \]
\[\leq C h^{2} [h^{-1} |u - u_h|_{1,p} + |u|^2_{2,p}] v_{1,p'}. \quad (2.15) \]

By the definition (2.6) of \(E_3, \) the triangle inequality, and the approximation properties,
\[|E_3(u - u_h, v)| \leq Ch|u|_{2,p}|v|_{1,p'} . \] \tag{2.16}

Among \(E_1 \) through \(E_4 \) the only term that would prevent an \(h^2 \) factor in front of a \(|u|_{2,p} \) term is \(E_3 \). But if \(u \in W^{3,p} \), we can proceed as follows to get an extra power of \(h \).

First observe that for \textit{barycentric} partitions

\[\int_K (\Pi_h v - \Pi_h^2 v)dx = 0 , \] \tag{2.17}

and hence

\[|E_3(u - u_h, v)| = \left| \sum_K \int_K [\nabla \cdot \bar{A} \nabla (u - I_2 u)](\Pi_h v - \Pi_h^2 v)dx \right| \leq C \sum_K |u - I_2 u|_{2,p;K}\|\Pi_h v - \Pi_h^2 v\|_{0,p',K} \leq Ch^2|u|_{3,p}\|v|_{1,p'} , \] \tag{2.18}

where \(I_2 \) is the quadratic interpolation operator on \(K \).

As for \(E_4 \), let \(L \) be the common edge of two adjacent elements \(K_1 \) and \(K_2 \), and let \(n_1 \) and \(n_2 \) be unit outer normal vectors of \(K_1 \) and \(K_2 \) along \(L \). Let \(E \) be the collection of all interior edges in \(\mathcal{T}_h \). Observe that \(\bar{A} \nabla u_h \cdot n \) is constant along any edge \(L \) and

\[\int_L (\Pi_h v - \Pi_h^2 v)ds = 0 , \] \tag{2.19}

where the fact of midpoint partition was used. Thus,

\[\int_L \bar{A} \nabla u_h \cdot n(\Pi_h v - \Pi_h^2 v)ds = 0 . \] \tag{2.20}

Obviously, on \(L \)

\[|\Pi_h v - \Pi_h^2 v| \leq |v_l - v_{l+1}| \] \tag{2.21}

for some \(l \in \{1, 2, 3\} \). Let \(I_1 \) be the linear interpolation operator on \(K_1 \cup K_2 \). Now using the boundary condition and piecewise continuity of \(\bar{A} \nabla u_h \cdot n(\Pi_h v - \Pi_h^2 v) \), we have by definition (2.7), (2.20), and (2.21)

\[|E_4(u - u_h, v)| = \left| \sum_{L \in E} \int_L [\bar{A}_{K_1} - \bar{A}_{K_2}] \nabla (u - I_1 u) \cdot n(\Pi_h v - \Pi_h^2 v)ds \right| \]

\[= \left| \sum_{L \in E} \int_L [\bar{A}_{K_1} - \bar{A}_{K_2}] \nabla (u - I_1 u) \cdot n(\Pi_h v - \Pi_h^2 v)ds \right| \]
Theorem 2.1. Let \(u \) and \(u_h \) be the solutions of (1.1) and (1.14), respectively. Suppose that \(u \in W^{2,p}(\Omega) \) and \(r_{\text{max}} = \gamma_{\text{max}} > 2 \) [cf. (1.7) and (1.9)]. Then for \(h \) sufficiently small:

\[
\| u - u_h \|_{1,p} \leq Ch\| u \|_{2,p}, \quad 2 \leq p < r_{\text{max}} \leq \infty.
\]

In particular, if the domain \(\Omega \) is either rectangular or smooth and \(a_{ij} \in C(\overline{\Omega}) \), then

\[
\| u - u_h \|_{1,p} \leq Ch\| u \|_{2,p}, \quad 2 \leq p < \infty.
\]

Proof. Since the conjugate index \(r'_{\text{max}} = r(r - 1) < p' \leq 2 \), by the regularity condition (1.9), the following the auxiliary problem is well posed, i.e., given a function \(\psi \in C_0^\infty(\Omega) \), find \(\Psi \in H^{1}_0(\Omega) \) such that

\[
\| u - u_h \|_{1,p} \leq C h\| u \|_{2,p}, \quad 2 \leq p < \infty.
\]

Remark 2.1. One should notice from (2.17) that barycentric subdivisions play a crucial role in the validity of (2.2). All the first-order results in this article are derived via (2.1) and second or near second-order results via (2.2).

Setting \(u = 0 \) in Lemma 2.1, one obtains the following lemma.

Lemma 2.2. Under the same assumptions of Lemma 2.1, we have

\[
|a(\mathbf{u}_h, \Pi_h \mathbf{v}) - a^*(\mathbf{u}_h, \Pi_h^* \mathbf{v})| \leq Ch\| \mathbf{u}_h \|_{1,p} \| \mathbf{v} \|_{1,p'}.
\]

Lemma 2.3. Assume that \(u \in W^{2,p} \cap H^1_0(\Omega), 2 \leq p \leq \infty \). Then

\[
\| u - R_h u \|_{1,p} \leq Ch\| u \|_{2,p}, \quad 2 \leq p \leq \infty,
\]

\[
\| u - R_h u \|_{0,p} \leq Ch\| u \|_{2,p}, \quad 2 \leq p < \infty,
\]

\[
\| u - R_h u \|_{0,\infty} \leq Ch\log \frac{1}{h} \| u \|_{2,\infty}, \quad (p = \infty).
\]

Furthermore, for the conjugate index \(p' = pl(p - 1) \) one has

\[
\| u - R_h u \|_{1,p} \leq Ch\| u \|_{2,p'}. \tag{2.26}
\]

Inequalities (2.23)–(2.25) are well known [4, 23, 24] and (2.26) can be found in [25]. Note that they are valid for both convex polygonal and smooth domains.

We are now ready to show the main results of this section. Without loss of generality the two parameters in (1.7) and (1.9) are chosen the same.
Theorem 2.2. Let u and u_h be the solutions of (1.1) and (1.14), respectively. Suppose that $u \in W^{1,\alpha}(\Omega)$ and $r_{\max} = \gamma_{\max} > 2 [\text{cf. (1.7) and (1.9)}]$, then for h sufficiently small:

$$
\|u - u_h\|_{1,p} \leq Ch\|u\|_{2,p}, \quad 2 \leq p < r_{\max} \leq \infty,
$$

(2.35)

where $q > 1$, if $p = 2$; and $q = 2p/(p + 2)$, if $p > 2$.

In particular, for rectangular or smooth domain Ω and $a_{ij} \in C(\Omega)$,
\[\| u - u_h \|_{0,p} \leq Ch^2 \| u \|_{3,q}, \quad 2 \leq p < \infty, \]
(2.36)

where \(q > 1 \), if \(p = 2 \); and \(q = 2p/(p + 2) \), if \(p > 2 \).

Proof. Since \(2 \leq p < \infty \) and \(r_{\max} > 2 \), we have by (1.7) that for \(1 < p' < r_{\max} \) the solution to the following problem exists: given a function \(\phi \), find \(\Phi \in H_0^1(\Omega) \) such that

\[a(v, \Phi) = (\phi, v), \quad v \in H_0^1(\Omega), \]
(2.37)

\[\| \Phi \|_{2,p'} \leq C \| \phi \|_{0,p'}, \quad \frac{1}{p} + \frac{1}{p'} = 1. \]
(2.38)

Thus,

\[(u - u_h, \Phi) = a(u - u_h, \Phi) = a(u - u_h, \Phi - R_h \Phi) + [a(u - u_h, R_h \Phi) - a(u - u_h, \Pi_h R_h \Phi)] := J_1 + J_2. \]
(2.39)

By (2.27) and (2.26),

\[|J_1| \leq c \| u - u_h \|_{1,p} \| \Phi - R_h \Phi \|_{1,p'} \leq Ch^2 \| u \|_{2,p} \| \Phi \|_{2,p'}. \]
(2.40)

By (2.2), (2.27), and the imbedding theorems (e.g., \(W_0^{2,p'} \subset W_0^{1,q} \)), \(1 + 2/q' = 2/p', p > 2 \)

\[|J_2| \leq Ch^2 [h^{-1} \| u - u_h \|_{1,q} + \| u \|_{3,q}] \| \Phi \|_{1,q'}, \frac{1}{q} + \frac{1}{q'} = 1 \leq Ch^2 \| u \|_{3,q} \| \Phi \|_{2,p'}. \]
(2.41)

Combining (2.40), (2.41) with (2.39) and applying (2.38) complete the proof.

Given any \(z \in \bar{\Omega} \), we define \(G_h(z) \in U_h \) to be the discrete Green’s function associated with the form \(a(\cdot, \cdot) \) if

\[a(G_h, w_h) = w_h(z) \quad \forall w_h \in U_h. \]
(2.42)

Let \(v \) be a given unit vector (direction) and let \(\Delta z \) be any vector parallel to \(v \). Then we define

\[\partial_z G_h := \lim_{\Delta z \to 0} \frac{G_{\cdot+\Delta z}^h - G_z^h}{|\Delta z|}. \]
(2.43)

Here following [26], we have used \(\partial_z \) even for nonpartials. However, in this article the reader can think of \(\partial_z \) as \(v \cdot \nabla_z \), where \(v \) is either \((1, 0)^t\) or \((0, 1)^t\).

Lemma 2.4. The derivative \(\partial_z G_h \in U_h \) has the following properties.

\[a(\partial_z G_h, v_h) = \partial_z v_h(z) \quad \forall v_h \in U_h, \]
(2.44)
For $r_{\max} > 2$ [cf. (1.7)], there exists a positive constant C, independent of z and h such that

$$\|\partial_z G_z^{h}\|_3^3 + \|\partial_z G_z^{h}\|_{1,1} + \|G_z^{h}\|_{1,2} \leq C|\ln h|.$$ \hfill (2.45)

For $r_{\max} > 1$ there exists a positive constant C_p, dependent on p but not on z and h, such that for $p < 2$,

$$\|G_z^{h}\|_{1,p} \leq C_p.$$ \hfill (2.46)

The inequalities (2.45) and (2.46) can be found in Theorems 3.14 and 3.17 of [26], respectively.

Theorem 2.3. Let u and u_h be the solutions of (1.1) and (1.14), respectively. Then for h sufficiently small

$$\|u - u_h\|_{1,\infty} \leq C h(\|u\|_{2,\infty} + \|u\|_3),$$ \hfill (2.47)

$$\|u - u_h\|_{0,\infty} \leq C h^2 \log \frac{1}{h}(\|u\|_{2,\infty} + \|u\|_3),$$ \hfill (2.48)

$$\|u - u_h\|_{1,\infty} \leq C h|\ln h|\|u\|_{2,\infty},$$ \hfill (2.49)

provided that the solution u has the indicated smoothness.

Proof. The first two inequalities were proved in [5]. The third inequality simply says we do not need $\|u\|_3$ if we are willing to pay with a logarithmic factor.

Let us show (2.49). It is known from Lemma 2.3 that $\|u - R_h u\|_{1,\infty} \leq C h\|u\|_{2,\infty}$. Thus, by the triangle inequality it suffices to show the following. By (2.44), (1.19), (1.20), and (2.1):

$$|\partial_z(R_h u - u_h)(z)| = |a(R_h u - u_h, \partial_z G_z^{h})|$$
$$= |a(u - u_h, \partial_z G_z^{h})|$$
$$= |a(u - u_h, \partial_z G_z^{h}) - a^*(u - u_h, \Pi^{h}_z \partial_z G_z^{h})|$$
$$\leq C h(\|u - u_h\|_{1,\infty} + \|u\|_{2,\infty})\|\partial_z G_z^{h}\|_{1,1}$$
$$\leq C h(\|R_h u - u_h\|_{1,\infty} + \|R_h u - u_h\|_{1,\infty} + \|u\|_{2,\infty})\|\partial_z G_z^{h}\|_{1,1}. $$ \hfill (2.50)

Now to complete the proof, use (2.45) and absorb the $C h|\ln h|\|R_h u - u_h\|_{1,\infty}$ term to the left side. [Note that if we apply (2.2) instead of (2.1), we can prove (2.47).]

Remark 2.2. One might ask if the technique of compensating a logarithmic factor for relaxing regularity also works for (2.48). Unfortunately, the answer is negative. This may be seen as follows. Recall from Lemma 2.3 that $\|u - R_h u\|_{0,\infty} \leq h^2 |\ln h|\|u\|_{2,\infty}$. Now

$$|(R_h u - u_h)(z)| = |a(R_h u - u_h, G_z^{h})|$$
$$= |a(u - u_h, G_z^{h})|$$
$$= |a(u - u_h, G_z^{h}) - a^*(u - u_h, \Pi^{h}_z G_z^{h})|$$
$$\leq C h(\|u - u_h\|_{1,2} + \|u\|_{2,2})\|G_z^{h}\|_{1,2}. $$ \hfill (2.51)
We lose a power of h in the $W^{0,\infty}$ error if u is less smooth. In contrast, if we invoke (2.2) instead of (2.1), we actually get (2.48).

The remainder of this section deals with the issue of how close the covolume solution is to the standard finite element solution.

Theorem 2.4. Let u and u_h be the solutions of (1.1) and (1.14), respectively. Suppose that $u \in W^{3,p}(\Omega)$ and $r_{\max} = \gamma_{\max} > 2$. Then for h sufficiently small,

$$\|R_h u - u_h\|_{1,p} \leq Ch^2\|u\|_{3,p}, \quad 2 \leq p \leq r_{\max} \leq \infty.$$ \hfill (2.52)

Furthermore, for rectangular or smooth domains and $a_{ij} \in C(\bar{\Omega})$, one can take $r_{\max} = \infty$ in the above inequality.

Proof. We proceed as in Theorem 2.1. By (2.29), we have

$$|((R_h u - u_h), \psi)| = |a(R_h u - u_h, \Psi)|$$

$$= |a(R_h u - u_h, \Psi - R_h \Psi) + a(R_h u - u_h, R_h \Psi)|$$

$$= |a(u - u_h, R_h \Psi) - a^*(u - u_h, \Pi^h \Psi)| \quad \text{(by (1.19), (1.20))}$$

$$\leq Ch^2|u - u_h|_{1,p} + |u|_{3,p} \|\Psi\|_{1,p'} \quad \text{(by (2.2))}$$

$$\leq Ch^2|u|_{3,p} \|\psi\|_{0,p'}. \quad \text{(by (2.27), (2.30))}$$

The proof is complete. \hfill \blacksquare

Theorem 2.5. Let u and u_h be the solutions of (1.1) and (1.14), respectively. Then for h sufficiently small

$$\|R_h u - u_h\|_{1,\infty} \leq Ch^2 \log \frac{1}{h} \cdot \|u\|_{3,\infty}, \quad \text{(2.53)}$$

provided that the solution has the indicated smoothness.

Proof.

$$|\partial z(R_h u - u_h)(z)| = |a(R_h u - u_h, \partial_z G^h_z)|$$

$$= |a(u - u_h, \partial_z G^h_z)|$$

$$= |a(u - u_h, \partial_z G^h_z) - a^*(u - u_h, \Pi^h \partial_z G^h_z)|$$

$$\leq Ch^2|h^{-1}|u - u_h|_{1,\infty} + |u|_{3,\infty} \|\partial_z G^h_z\|_{1,1}$$

$$\leq Ch^2|u|_{3,\infty} \log \frac{1}{h},$$

where we have used (2.45). This completes the proof. \hfill \blacksquare

The logarithmic factor can be removed in the $W^{0,\infty}(\Omega)$ case.
Theorem 2.6.

\[\|R_h u - u_h\|_{0, \infty} \leq Ch^2 \|u\|_{3,p}, \quad p > 2, \]

provided that the solution has the indicated smoothness.

Proof. Using Lemma 2.1, we deduce

\[
|(R_h u - u_h)(z)| = |a(R_h u - u_h, G_h^z)| \\
= |a(u - u_h, G_h^z) - a^*(u - u_h, \Pi_h^*G_h^z)| \\
\leq Ch^2|h^{-1}|u - u_h|_{1,p} + |u|_{3,p}|G_h^z|_{1,p} \\
\leq Ch^2\|u\|_{3,p},
\]

where we have used (2.46).

Remark 2.3. It should be noted that for smooth domains and smooth data, the assumption \(u \in W^{3,p}, 2 \leq p \leq \infty, \) that appeared in the last few theorems is not stringent at all. For the polygonal domain case, the assumption is of course unrealistic. However, one can always replace the \(\|u\|_{3,p} \) term by a lower order term times a logarithmic factor using the techniques in the proof of (2.49).

3. ESTIMATES FOR PARABOLIC PROBLEMS

By now one should be clear about the role of the two parameters \(r_{\text{max}} = \gamma_{\text{max}} \) in the assumptions \(\textbf{R1}, \textbf{R2} \) in the statements of various theorems. Thus in the remainder of this article, we will simply deal with rectangular or smooth domains. Furthermore, we assume that \(a_{ij} \in C(\bar{\Omega}) \) and that the solution have required smoothness. For ease of exposition, these conditions will not be stated explicitly in the theorems below.

Consider the parabolic problem

\[u_t + Lu = f(x, t), \quad (x, t) \in \Omega \times (0, T], \]

\[u = 0, \quad (x, t) \in \partial \Omega \times [0, T], \]

\[u = u_0(x), \quad t = 0, x \in \Omega, \]

where \(Lu = -\nabla \cdot (A \nabla u) \) as in (1.1) and \(u_t = \partial u/\partial t. \) Then

\[(u_t, v_h) + a^*(u, v_h) = (f, v_h), \quad v_h \in V_h. \]

The approximation problem is then to find \(u_h(t) : [0, T] \rightarrow U_h \) such that

\[(u_{h,t}, v_h) + a^*(u_h, v_h) = (f, v_h), \quad v_h \in V_h, \quad 0 < t \leq T, \]

\[u_h(0) = R_h^* u_0, \]
where $R_h^*: H_0^1(\Omega) \to U_h$ is the generalized elliptic projection operator defined by

$$a^*(R_h^*w - w, v_h) = 0, \quad v \in V_h. \quad (3.7)$$

Theorem 3.1. For h sufficiently small

$$\| u_h - R_h^*u \| \leq Ch^2 \left(\int_0^t \| u_h \|_{V}^2 d\tau \right)^{1/2}, \quad 0 \leq t \leq T, \ r > 1. \quad (3.8)$$

Proof. Let $\xi = u_h - R_h^*u, \ \eta = R_h^*u - u$, so that

$$u_h - u = \xi + \eta. \quad (3.9)$$

By (3.4)–(3.7), we derive the error equation

$$(\xi, v_h) + a^*(\xi, v_h) = -(\eta, v_h), \quad v_h \in V_h. \quad (3.10)$$

Taking $v_h = \Pi_h^*\xi$,

$$\| \xi \|_0^2 + \frac{1}{2} \frac{d}{dt} a^*(\xi, \Pi_h^*\xi) = -(\eta, \Pi_h^*\xi) + \frac{1}{2} [a^*(\xi, \Pi_h^*\xi) - a^*(\xi, \Pi_h^*\xi)], \quad (3.11)$$

where $\| \xi \|_0^2 = (\xi, \Pi_h^*\xi)$. Recall that

$$(w_h, \Pi_h^*w_h) = (\bar{w}_h, \Pi_h^*w_h) \quad \forall w_h, \bar{w}_h \in U_h,$$

and that $\| \cdot \|_0$ is an equivalent norm to the usual $\| \cdot \|_0$ norm on U_h (cf. Lemma 2.2 of Chou and Li [9]). In addition, (cf. Lemma 2.4 of [5])

$$|a^*(w_h, \Pi_h^*T_h) - a^*(T_h, \Pi_h^*w_h)| \leq Ch\|w_h\|_1\|T_h\|_1 \quad \forall w_h, T_h \in U_h.$$

Combining these with an inverse inequality, we derive

$$|a^*(\xi, \Pi_h^*\xi) - a^*(\xi, \Pi_h^*\xi)| \leq Ch\|\xi\|_1\|\xi\|_1 \leq C\|\xi\|_0^2 + \|\xi\|_0^2,$$

where we have used the ϵ-inequality: $ab \leq a^2 + \frac{1}{4\epsilon} b^2, \ a > 0, \ b > 0$. Also

$$|(\eta, \Pi_h^*\xi)| \leq C\|\eta\|_0^2 + \|\xi\|_0^2.$$

Taking ϵ small enough to absorb the ξ term into the left side of (3.11), we have

$$\frac{d}{dt} a^*(\xi, \Pi_h^*\xi) \leq C(\|\eta\|_0^2 + \|\xi\|_0^2). \quad (3.12)$$
Integrating and noting $\xi(0) = 0$

$$\alpha \|\xi\|^2 \leq a^*(\xi, \Pi_h \xi) \leq C \int_0^t (\|\eta\|_0^2 + \|\xi\|^2_1) \, d\tau. \quad (3.13)$$

Then Gronwall’s inequality and (2.35) imply that

$$\|\xi\|^2 \leq C \int_0^t \|\eta\|_0^2 \, d\tau \leq C h^4 \int_0^t \|u_h\|^2_3 \, d\tau. \quad (3.14)$$

This completes the proof.

Theorem 3.2. Let $r > 1$. For h sufficiently small,

$$\|u_h - u\|_{0,p} \leq C h^r \left[\|u\|_{3,q} + \left(\int_0^t \|u_h\|^2_3 \, d\tau \right)^{1/2} \right], \quad 2 \leq p < \infty, \quad (3.15)$$

where $q > 1$, if $p = 2$, and $q = 2p(\rho + 2)$ if $p > 2$.

Proof. By an imbedding theorem

$$\|\xi\|_{0,p} \leq C \|\xi\|_1. \quad (3.16)$$

Combining (3.14) and (2.35) with (3.9) completes the proof.

Theorem 3.3. For h sufficiently small,

$$\|u - u_h\|_{1,p} \leq C h \left[\|u\|_{2,p} + \|u_0(0)\|_2 + \|u_1\|_2 + \int_0^t \|u_2\|_2 \, d\tau \right], \quad 2 \leq p < \infty, \quad 0 < t < T. \quad (3.17)$$

Proof. By (3.4) and (3.5)

$$a^*(u - u_h, v_h) = -((u - u_h), v_h), \quad u_h \in V_h. \quad (3.18)$$

Let Ψ be as in (2.29). Then

$$((u - u_h)_x, \psi) = a(u - u_h, \Psi)$$

$$= a(u - u_h, \Psi - R_h \Psi) + [a(u - u_h, R_h \Psi) - a^*(u - u_h, \Pi_h R_h \Psi)] - ((u - u_h), \Pi_h R_h \Psi) \quad \text{(by (3.18))}$$

$$:= R_1 + R_2 + R_3. \quad (3.19)$$
Let us estimate R_1 first.

$$ |R_1| = |a(u - R_n u, \Psi - R_n \Psi)| = |a(u - R_n u, \Psi)| \leq C\|u - R_n u\|_{1,p} ||\Psi||_{1,p'} \leq Ch\|u\|_{1,p} ||\Psi||_{1,p'}. \tag{3.20} $$

By (2.1)

$$ |R_2| \leq Ch[|u - u_n|_{1,p} + |u|_{1,p'}] ||\Psi||_{1,p'}. \tag{3.21} $$

Finally, R_3 is estimated as follows. Differentiating (3.10) and setting $v_h = \Pi_n^h \xi_n$, we have

$$ (\dot{\xi}_n, \Pi_n^h \dot{\xi}) + a^h(\xi_n, \Pi_n^h \xi) = -(\eta_n, \Pi_n^h \xi). $$

For brevity, write $\| \cdot \|_0$ as $\| \cdot \|$. Hence

$$ \frac{1}{2} \frac{d}{dt} \| \xi \|_0^2 \leq \| \eta_n \| \| \Pi_n^h \xi \|. $$

To handle the possibility of non-differentiability at $\xi = 0$, we rewrite it as

$$ \frac{1}{2} \frac{d}{dt} (\| \xi \|_0^2 + \epsilon^2) \leq \| \eta_n \| \| \Pi_n^h \xi \|, \quad \epsilon > 0, $$

or

$$ (\| \xi \|_0^2 + \epsilon^2)^{1/2} \frac{d}{dt} (\| \xi \|_0^2 + \epsilon^2)^{1/2} \leq \| \eta_n \| \| \Pi_n^h \xi \|. $$

Now using the equivalence of $\| \cdot \|_0$ and $\| \cdot \|$, the fact $\| \xi \|_0 \leq (\| \xi \|_0^2 + \epsilon^2)^{1/2}$, integrating and letting ϵ tend to zero, we get

$$ \| \xi \| \leq C\|\xi_n(0)\| + C \int_0^t \| \eta_n \| d\tau. $$

Setting $t = 0$ and $v_h = \Pi_n^h \xi_n(0)$ in (3.10), one has $\| \xi_n(0) \| \leq C\|\eta_n(0)\|$. Thus

$$ \| \xi \| \leq C \left[\| \eta_n(0) \| + \int_0^t \| \eta_n \| d\tau \right] \leq Ch \left[\| u_n(0) \|_2 + \int_0^t \| u_n \|_d d\tau \right], \tag{3.22} $$

where we have used Theorem 2.1. (Similarly, using Theorem 2.2 one can also derive

$$ \| \xi \| \leq Ch^3 \left[\| u_n(0) \|_{3,r} + \int_0^t \| u_n \|_{3,r} d\tau \right], \quad r > 1, \tag{3.23} $$
which will not be used in this proof, but later in other ones.) Thus by (3.22) and (2.27)

$$|R_3| \leq (\|\xi\| + \|\eta\|)\|\Psi\|_0 \leq Ch\left[\|u\|_2 + \|u(0)\|_2 + \int_0^t \|u_{,\psi}\|_2 d\tau\right] \|\Psi\|_{1,\rho},$$

(3.24)

where we have used the fact \(\|\Psi\|_0 \leq C\|\Psi\|_{1,\rho}, \quad r > 1\). Combining (3.20), (3.21), and (3.24) with (3.19), we have

$$|((u - u_h), \psi)| \leq Ch\left[\|u - u_h\|_{1,\rho} + \|u\|_{2,\rho} + \|u(0)\|_2 + \|u\|_2 + \int_0^t \|u_{,\psi}\|_2 d\tau\right] \|\Psi\|_{1,\rho}.$$

Then by (2.30) we have for sufficiently small \(h\) that

$$\|u - u_h\|_{1,\rho} \leq Ch\|u - u_h\|_{1,\rho} + Ch\left[\|u\|_{2,\rho} + \|u(0)\|_2 + \|u\|_2 + \int_0^t \|u_{,\psi}\|_2 d\tau\right].$$

The proof is complete. \(\blacksquare\)

Remark 3.1. The quantity \(\|u(0)\|_2\) on the right side of (3.17) is treated as data, since we can use (3.1) with smooth initial function in \(H^1(\Omega)\).

Theorem 3.4. For \(h\) sufficiently small,

$$\|u - u_h\|_{1,\rho} \leq Ch\left[\|u\|_{2,\rho} + \|u\|_3 + \left(\int_0^t \|u_{,\psi}\|_2^2 d\tau\right)^{1/2}\right], \quad q > 1,$$

(3.25)

$$\|u - u_h\|_{0,\rho} \leq Ch^2\log \frac{1}{h} \left[\|u\|_{2,\rho} + \|u\|_3 + \left(\int_0^t \|u_{,\psi}\|_2^2 d\tau\right)^{1/2}\right], \quad q > 1.$$

(3.26)

Proof. Let \(\xi = u_h - R_h^\delta u, \eta = R_h^\delta u - u\). By an inverse property and (3.8)

$$\|\xi\|_{1,\rho} \leq Ch^{-1}\|\xi\| \|\xi\| \leq Ch\left(\int_0^t \|u_{,\psi}\|_2^2 d\tau\right)^{1/2}.$$

(3.27)

By (2.47)

$$\|\eta\|_{1,\rho} \leq Ch[\|u\|_{2,\rho} + \|u\|_3],$$

(3.28)

which along with (3.27) derives (3.25). On the other hand, by using the asymptotic Sobolev inequality [4] and (3.8)
Theorem 3.6. For \(h \) sufficiently small
\[
\|\xi\|_{0,\infty} \leq C \left(\log \frac{1}{h} \right)^{1/2} \|\nabla \xi\|_0 \leq Ch \left(\log \frac{1}{h} \right)^{1/2} \left(\int_0^t \|u_t\|_{3,q}^2 d\tau \right)^{1/2}.
\] (3.29)

By (2.48)
\[
\|\eta\|_{0,\infty} \leq Ch^2 \log \frac{1}{h} \left[\|u\|_{2,\infty} + \|u\|_3 \right],
\] (3.30)
which with (3.29) gives (3.26).

Theorem 3.5. For \(h \) sufficiently small
\[
\|R_h u - u_h\|_{1,p} \leq Ch^2 \left[\|u\|_{3,p} + \|u(0)\|_{3,r} + \int_0^t \|u_{tt}\|_{3,r} d\tau \right], \quad 2 \leq p < \infty, \ r > 1.
\] (3.31)

Proof. By (2.29), (1.20), and (3.18),
\[
\begin{align*}
((R_h u - u_h), \psi) &= a(R_h u - u_h, \Psi - R_h \Psi) + a(R_h u - u_h, R_h \Psi) \\
&= [a(u - u_h, R_h \Psi) - a^*(u - u_h, \Pi_h^* R_h \Psi)] - ((u - u_h), \Pi_h^* R_h \Psi) := Q_1 + Q_2.
\end{align*}
\] (3.32)

On the other hand,
\[
\begin{align*}
|Q_1| &\leq Ch^2 h^{-1} |u - u_h|_{1,p} + |u|_{3,p} |\Psi|_{1,p} \\
&\leq Ch^2 \left[\|u\|_{3,p} + \|u(0)\|_2 + \|u\|_2 + \int_0^t \|u_{tt}\|_2 d\tau \right] \|\Psi\|_{1,p}, \quad \text{by (3.17)}
\] (3.33)

and by (3.23) and (2.36)
\[
\begin{align*}
|Q_2| &\leq C(\|\xi\| + \|\eta\|) \|\Psi\|_{0} \leq Ch^2 \left[\|u(0)\|_{3,r} + \|u\|_{3,r} + \int_0^t \|u_{tt}\|_r d\tau \right] \|\Psi\|_{1,p}.
\end{align*}
\] (3.34)

Noticing \(\|g\|_2 \leq C \|g\|_{3,r} \), \(r \geq 1 \) and applying the duality completes the proof.

Theorem 3.6. For \(h \) sufficiently small,
\[
\|R_h u - u_h\|_{1,\infty} \leq Ch^2 \left[\|u\|_{2,\infty} + \|u\|_3 + \left(\int_0^t \|u_t\|_{3,q}^2 d\tau \right)^{1/2} \right] \log \frac{1}{h} \]
\[
+ Ch^2 \left[\|u(0)\|_{3,r} + \int_0^t \|u_{tt}\|_r d\tau \right] \left(\log \frac{1}{h} \right)^{1/2}, \quad r > 1.
\]
Proof. Since
\[
\partial_z (\mathcal{R}_h u - u_h)(z) = a(\mathcal{R}_h u - u_h, \partial_z \mathcal{G}_z^h) = [a(u - u_h, \partial_z \mathcal{G}_z^h) - a^*(u - u_h, \Pi_h^* \partial_z \mathcal{G}_z^h)] - (\xi, \eta, \Pi_h^* \partial_z \mathcal{G}_z^h),
\]
we have
\[
|\partial_z (\mathcal{R}_h u - u_h)(z)| \leq C h |u|_{1,\infty} + |u|_{2,\infty} |\partial_z \mathcal{G}_z^h|_{1,1} + C(\|\xi\| + \|\eta\|)\|\partial_z \mathcal{G}_z^h\|.
\]
Recalling that
\[
|\partial_z \mathcal{G}_z^h|_{1,1} + \|\partial_z \mathcal{G}_z^h\|^2 \leq C \log \frac{1}{h}
\]
and using (3.23) as in (3.34) complete the proof.

Once again, we compare the covolume solution with the Galerkin finite element solution and demonstrate a second-order convergence.

Theorem 3.7. Let \(\bar{u}_h \) be the finite element solution to (3.1)–(3.3), i.e.,
\[
(\bar{u}_h, v) + a(\bar{u}_h, v) = (f, v), \quad v \in U_h, \quad (3.35)
\]
\[
\bar{u}_h(\cdot, 0) = R_h u_0. \quad (3.36)
\]
Then for \(p > 2 \) we have for \(h \) sufficiently small that
\[
\|\bar{u}_h - u_h\|_{1,p} \leq Ch \left[\|u\|_{3,p} + \|u_0\|_{3,r} + \|u_t\|_{3,r} + \int_0^t \|u_{tt}\|_{3,r} d\tau \right], \quad r > 1.
\]

Proof. By (3.1) and (3.35),
\[
((\bar{u}_h - u_h), v) + a(\bar{u}_h - u_h, v) = 0, \quad v \in U_h. \quad (3.37)
\]
As in (2.29),
\[
((\bar{u}_h - u_h), \psi) = a(\bar{u}_h - u_h, \Psi)
\]
\[
= a(\bar{u}_h - u_h, \Psi - R_h \Psi) + a(u - u_h, R_h \Psi) - a^*(u - u_h, \Pi_h^* \partial_z \mathcal{G}_z^h)
\]
\[
- (\bar{u}_h - u_h, \Pi_h^* \partial_z \mathcal{G}_z^h) + a(\bar{u}_h - u, R_h \Psi) \quad \text{(by (1.20), (3.18))}
\]
\[
= [a(u - u_h, \mathcal{G}_z^h) - a^*(u - u_h, \Pi_h^* \partial_z \mathcal{G}_z^h)] - ((\bar{u}_h - u_h), \Pi_h^* \partial_z \mathcal{G}_z^h)
\]
\[
- (\bar{u}_h - u, R_h \Psi) \quad \text{(by (1.20), (3.37))} = Q_1 + Q_2 - ((\bar{u}_h - u), R_h \Psi),
\]
where
\[
Q_1 = a(\bar{u}_h - u_h, \Psi - R_h \Psi), \quad Q_2 = a(u - u_h, R_h \Psi)
\]
and
\[
\Pi_h^* \partial_z \mathcal{G}_z^h = \Pi_h^* (\partial_z \mathcal{G}_z^h). \quad \text{(by (1.20), (3.37))}
\]
where \(Q_1 \) and \(Q_2 \) are as in (3.32). We know from the known finite element estimate that

\[
\| (\bar{u}_h - u) \|_{L^0} \leq C \left[h^2 (\| u \|_2 + \| u(0) \|_2) + \int_0^t \| u - R_h u \|_{L^0} d\tau \right] \\
\leq Ch^2 \left[\| u \|_2 + \| u(0) \|_2 + \int_0^t \| u_n \|_{L^2} d\tau \right].
\]

(3.38)

Combining (3.38), (3.33), and (3.34) completes the proof.

\[\Box\]

Theorem 3.8. Let \(r > 1 \). Then for sufficiently small \(h \),

\[
\| \bar{u}_h - u_h \|_{L^\infty} \leq Ch^2 \log \frac{1}{h} \left[\| u \|_{L^\infty} + \| u(0) \|_{L^r} + \| u \|_{L^r} + \int_0^t \| u_n \|_{L^r} d\tau \right].
\]

Proof. By (2.2) and the estimates similar to (3.24) and (3.34), we have

\[
| \partial_z (\bar{u}_h - u_h) | = |a(\bar{u}_h - u_h, \partial_z G_h^b) = | [a(u - u_h, \partial_z G_h^b) - a^*(u - u_n, \Pi h \partial_z G_h^b)] \\
- ((u - u_h)_n, \Pi h \partial_z G_h^b) - ((\bar{u}_h - u)_n, \partial_z G_h^b) | \\
\leq Ch^2[h^{-1}|u - u_h|_{L^\infty} + |u|_{L^\infty}] \cdot \| \partial_z G_h^b \|_{L^1} \\
+ Ch^2 \left[\| u(0) \|_{L^r} + \| u \|_{L^r} + \int_0^t \| u_n \|_{L^r} d\tau \right] \cdot \| \partial_z G_h^b \|_{L^1}. \\
+ Ch^2 \left[\| u(0) \|_{L^2} + \| u \|_{L^2} + \int_0^t \| u_n \|_{L^2} d\tau \right] \cdot \| \partial_z G_h^b \|_{L^1}.
\]

This completes the proof.

The above theorem corresponds to Theorem 2.5. As in Theorem 2.6, the logarithmic factor can be removed in the \(W^{0,\infty} (\Omega) \) case and one obtains the following.

Theorem 3.9. Let \(r > 1 \). Then for sufficiently small \(h \),

\[
\| \bar{u}_h - u_h \|_{L^\infty} \leq Ch^2 \left[\| u \|_{L^\infty} + \| u(0) \|_{L^r} + \| u \|_{L^r} + \int_0^t \| u_n \|_{L^r} d\tau \right].
\]
References

