## COIN TOSSES

In the Tossing coins activity (page 13), some students got tired tossing a coin 200 times. (Actually, it takes less time than you might think!) Anyway, for students that believe that this tossing takes too much work, I had Minitab do the tossing for you.

In the table below, I give results of 1000 flips of a fair coin. Each row contains the outcomes of 10 flips. For the activity, you need to choose 20 of these rows --- the values of the tosses (H's and T's) get placed in the 'TOSSES' columns in the table on page 14 of the activity material.

1000 COMPUTER TOSSES OF A FAIR COIN
ROW TOSSES
1 H T T H T T H H T H
2 H H H T T H H H H T
3 H H H H H T T T T H
4 T H H T T H T H T T
5 H T T H T T H T T T
6 T H T T H T H H H H
7 T T T T H T H H T H
8 T T H H T T T H T T
9 T T T H T H H H H H
10 T T H T H H H T H H
11 H H T T T T H H H T
12 T H T T T T H H T H
13 H H H H T H T H H H
14 H T H T T H T T H T
15 T T H H T H T H T H
16 H T T T H H H H H H
17 T T T H T H H H T T
18 T H T H H H T H H H
19 H H H H H T H T T T
20 H T T T T T H T H H
21 H T T H T T T H T T
22 T H T H T T T H H T
23 H H T T T H H H H T
24 T T T T H H H T H H
25 H H H H T H H H H H
26 T H H H T T T T H T
27 T T H T T T T T T T
28 T H T T H T T H H T
29 H H T H T H H T H H
30 H H H T T H H H T T
31 T T T H H H T H H H
32 H T T T H H H T T H
33 H H H H H H H T T H
34 H H H T T H T T T H
35 T T H H T T H H T H
36 H T T T H T H H H T
37 T T T T T T H H H H
38 H T T T H T H T H T
39 T H T H H H T H H H
40 H H T T H H T T H H
41 H H T H T T T H H T
42 T H T H T H T H T T
43 H T T H H T H T H T
44 T H H T H T T T T T
45 H T T H T T H H H H
46 T H H H H T T H T H
47 T T T T T H H T H T
48 T H T T T H H T T T
49 H H T H H H T H T T
50 H T T H T H T H T H
51 H H H H H T T H H T
52 H T T T T T T T T H
53 H H T H T H T H H T
54 H T H T T T H T H H
55 T H H H H T T H T T
56 H H T H T T H T H H
57 H H H T T H H H T H
58 H T H T T T H T H T
59 T T T H H H T T H T
60 H H T T T T H T H H
61 H H H T T T H T H H
62 H T T T T T T T H H
63 H T T T T T T H T T
64 T H H T H H T T H T
65 H T T T T H H H H H
66 T H H T H H T H T T
67 T H H H H T H T H H
68 H H H H T T H H T H
69 T T H H T H H T T H
70 H H H H H H H H H H
71 H H T T H H T T T T
72 H T T H H H H T H T
73 H H H T H H T T H H
74 H T H H T H H T T T
75 T H T H H H H T H T
76 H T H T T T T T H T
77 H H H T H H H T T H
78 H T T H H H H T H T
79 H H T H H H T T H T
80 T T H H H T H H H T
81 T H T H H H T T T T
82 T H T H T H T T H H
83 H T T H T H H H T T
84 H T T H T H H H H T
85 T T T T T H T T T T
86 H H H T T T H T T T
87 H T T H H H H T H T
88 H H T T T H T H H T
89 T T H T T H T T T H
90 H H T T T H T T H H
91 T T H H H T T H T T
92 T H T H H T T H T T
93 H H T H T T H H H T
94 H H H H T T H T T T
95 H T H H H T T T T H
96 T T H H T H H H T T
97 H H T T H H H T T T
98 T T T H H H H T T H
99 T H H T T T T T T T
100 H H H H H T T H H H

Page Author: Jim Albert (© 1996)
albert@bayes.bgsu.edu
Document: http://www-math.bgsu.edu/~albert/m115/probability/coin.html